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1 Executive Summary 

The objective of this work is to assimilate active microwave and Solar Induced Fluorescence 
(SIF) satellite observations in the Integrated Forecasting System (IFS) to update Leaf Area 
Index (LAI) and assess the impact on the IFS predictions of the Gross Primary Production 
(GPP), soil moisture and low-level meteorological fields (2m temperature and humidity). This 
work relies on the development of machine learning (ML)-based observation operators for (1) 

the normalized backscatter at 40 from the ASCAT (Advanced Scatterometer) instrument 
onboard METOP-B and C satellites and (2) SIF derived from TROPOMI (TROPOspheric 
Monitoring Instrument) onboard Copernicus Sentinel-5p satellite, which were described in the 
report D4-2 (December 2024). For SIF, the data assimilation was performed in the offline Land 
Data Assimilation (LDAS) system. The updated LAI was used to initialise IFS coupled model 
forecasts and the impacts on the IFS forecast of GPP, soil moisture, and low-level 
meteorological fields were evaluated. For ASCAT backscatter, the assimilation was directly 
conducted in the coupled LDAS in the IFS and the impacts of assimilating ASCAT backscatter 
on the IFS forecast performances were assessed against the operational configuration which 
relies on the assimilation of ASCAT soil moisture retrieval.  
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2 Introduction 

2.1 Background 

To enable the European Union (EU) to move towards a low-carbon economy and implement 
its commitments under the Paris Agreement, a binding target was set to cut emissions in the 
EU by at least 40% below 1990 levels by 2030. European Commission (EC) President von 
der Leyen committed to deepen this target to at least 55% reduction by 2030. This was further 
consolidated with the release of the Commission's European Green Deal on the 11th of 
December 2019, setting the targets for the European environment, economy, and society to 
reach zero net emissions of greenhouse gases in 2050, outlining all needed technological and 
societal transformations that are aiming at combining prosperity and sustainability. To support 
EU countries in achieving the targets, the EU and European Commission (EC) recognised the 
need for an objective way to monitor anthropogenic CO2 emissions and their evolution over 
time.  

 

Such a monitoring capacity will deliver consistent and reliable information to support informed 
policy- and decision-making processes, both at national and European level. To maintain 
independence in this domain, it is seen as critical that the EU establishes an observation-
based operational anthropogenic CO2 emissions Monitoring and Verification Support (MVS) 
(CO2MVS) capacity as part of its Copernicus Earth Observation programme.  

 

The CORSO research and innovation project will build on and complement the work of 
previous projects such as CHE (the CO2 Human Emissions), and CoCO2 (Copernicus CO2 
service) projects, both led by ECMWF.  These projects have already started the ramping-up 
of the CO2MVS prototype systems, so it can be implemented within the Copernicus 
Atmosphere Monitoring Service (CAMS) with the aim to be operational by 2026. The CORSO 
project will further support establishing the new CO2MVS addressing specific research & 
development questions. 

 

The main objectives of CORSO are to deliver further research activities and outcomes with a 
focus on the use of supplementary observations, i.e., of co-emitted species as well as the use 
of auxiliary observations to better separate fossil fuel emissions from the other sources of 
atmospheric CO2. CORSO will deliver improved estimates of emission factors/ratios and their 
uncertainties as well as the capabilities at global and local scale to optimally use observations 
of co-emitted species to better estimate anthropogenic CO2 emissions. CORSO will also 
provide clear recommendations to CAMS, ICOS, and WMO about the potential added-value 
of high-temporal resolution 14CO2 and APO observations as tracers for anthropogenic 
emissions in both global and regional scale inversions and develop coupled land-atmosphere 
data assimilation in the global CO2MVS system constraining carbon cycle variables with 
satellite observations of soil moisture, LAI, SIF, and Biomass. Finally, CORSO will provide 
specific recommendations for the topics above for the operational implementation of the 
CO2MVS within the Copernicus programme. 

 

2.2 Scope of this deliverable 

2.2.1 Objectives of this deliverable 

The objective of this work is to evaluate the impact of the assimilation of active microwave and 
Solar Induced Fluorescence (SIF) satellite observations on the Integrated Forecast System 
(IFS) prediction of the carbon and water fluxes and low-level meteorological fields. 
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2.2.2 Work performed in this deliverable 

We implemented the assimilation of (1) the normalized backscatter at 40 from the ASCAT 
(Advanced Scatterometer) instrument onboard METOP-B and C satellites in the coupled land 
data assimilation system (LDAS) in the IFS and (2) Solar Induced Fluorescence (SIF) derived 
from TROPOMI (TROPOspheric Monitoring Instrument) onboard Copernicus Sentinel-5p 
satellite, in the offline LDAS. This work relies on the development of machine learning (ML)-
based observation operators for both ASCAT backscatter and SIF which were described in 
the report D4-2 (December 2024). The SIF data assimilation developments were first 
presented in the report D4-3 (December 2024) as well as in Garrigues et al. 2025a, 2025b. 
This report presents the implementation of both SIF and ASCAT data assimilation in the offline 
and coupled, respectively, LDAS. For the SIF data assimilation configuration, the updated LAI 
was used to initialise IFS coupled model forecasts and the impacts on the IFS forecast of 
Gross Primary Production (GPP), soil moisture, and low-level meteorological fields (2 m 
temperature and humidity) were evaluated. For ASCAT, the impacts of assimilating ASCAT 
backscatter on the IFS forecast performances were assessed against the operational 
configuration which relies on the assimilation of ASCAT soil moisture retrieval.  

The SIF data assimilation methodology and the associated results are also presented in 
Garrigues et al. (2025a,b). 

 

2.2.3 Deviations and counter measures 

None reported. 

 

2.3 Project partners: 

Partners  

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER 
FORECASTS 

ECMWF 

AKADEMIA GORNICZO-HUTNICZA IM. STANISLAWA 
STASZICA W KRAKOWIE 

AGH 

BARCELONA SUPERCOMPUTING CENTER - CENTRO 
NACIONAL DE SUPERCOMPUTACION 

BSC 

COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES 
ALTERNATIVES 

CEA 

KAMINSKI THOMAS HERBERT iLab 

METEO-FRANCE MF 

NEDERLANDSE ORGANISATIE VOOR TOEGEPAST 
NATUURWETENSCHAPPELIJK ONDERZOEK TNO 

TNO 

RIJKSUNIVERSITEIT GRONINGEN RUG 

RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG UHEI 

LUNDS UNIVERSITET ULUND 

UNIVERSITE PAUL SABATIER TOULOUSE III  UT3-CNRS 

WAGENINGEN UNIVERSITY WU 

EIDGENOSSISCHE MATERIALPRUFUNGS- UND 
FORSCHUNGSANSTALT 

EMPA 

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH ETHZ 

UNIVERSITY OF BRISTOL UNIVBRIS 

THE UNIVERSITY OF EDINBURGH UEDIN 
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3 Data 

3.1 ASCAT backscatter dataset 

The Advanced Scatterometer (ASCAT) data consist of C-band radar backscatters (sigma0). 

In this work, we use the ASCAT sigma0 normalised at an incidence angle of 40 which is 
available from the EUMETSAT HSAF service. Digital Object Identifier (DOI) is: 
https://doi.org/10.15770/EUM_SAF_H_0009. Four years of ASCAT covering the period 2016 
to 2019 was used in this work to develop a ML-based observation operator for assimilating 
sigma0 in the IFS. Frozen soil, water bodies, snow areas and mountain areas were excluded 
from the observation database. 

3.2 TROPOSIF dataset 

The TROPOSIF dataset (Guanter et al, 2021), which consists of global SIF observations from 
TROPOMI (TROPOspheric Monitoring Instrument) on board Sentinel-5P satellite, was used 
for the period from 2019 to 2022. The data with view and solar zenith angles above 60° and 
70°, respectively, were filtered out. We used here SIF retrievals gridded at 0.1° spatial 
resolution and temporally averaged over 8 days to enhance the signal-to-noise ratio of SIF 
and to minimize the uncertainties caused by geometric registration errors. 

3.3 LAI satellite-based dataset 

The Copernicus Land Monitoring Service (CLMS) LAI dataset was used to evaluate the 
updated LAI from the land data assimilation system (CLMS, 2025). The CLMS LAI was 
estimated from the surface reflectances derived from the VEGETATION instrument on board 
PROBA-V before August 2020 and from the Ocean and Land Colour Instrument (OLCI) on 
board Sentinel-3 since September 2020 (CLMS, 2025). We used the RT1 version of LAI 
CLMS. For this study, the dataset was resampled at 0.1° spatial resolution and 8-day temporal 
frequency.  

3.4 GPP satellite-based dataset 

The IFS forecasts of GPP were assessed against the FluxSat GPP dataset, version 2.0  
(Joiner and Yoshida 2021). FluxSat GPP is retrieved from MODIS reflectances using a neural 
network trained on GPP FLUXNET measurements. In this work, the FluxSat daily product was 
resampled at 8-day temporal frequency and 0.1° resolution spatial resolution. 

3.5 In situ soil moisture measurements 

The evaluation of the soil moisture analysis and forecast was performed using various in situ 
measurements from distinct measurement networks worldwide (e.g. SMOSMANIA in France, 
Albergel et al, 2011; USCRN in the US, Bell et al., 2013). These datasets are described in 
Fairbairn et al. (2019). 

 

4 Methods 

4.1 IFS land model and the land data assimilation system (LDAS) 

4.1.1 The ecLand IFS land model 

This work is based on the IFS cycle 49r1 and its land model ecLand (Boussetta et al., 2021). 
ecLand comprises 4 soil layers of 0.07 m, 0.21 m, 0.72 m and 1.89 m thicknesses. Soil 
moisture is analysed in the first three soil layers which represent the root-zone of 1m depth. 
EcLand employs the Faquhar photosynthesis model. The vegetation classes are derived from 
the European Space Agency-Climate Change Initiative Land Use/Land Cover (ESA CCI) 
dataset. ecLand relies on a satellite-derived monthly mean LAI climatology (Boussetta et 
al., 2021; Boussetta and Balsamo, 2021). To distinguish between low (grassland, crop, 

https://doi.org/10.15770/EUM_SAF_H_0009
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shrubland) and high (forest) vegetation types, the ecLand LAI is disaggregated into a low and 
high LAI for each grid cell. 

4.1.2 The IFS Land data assimilations system (LDAS) 

The IFS LDAS is composed of several components for the low-level meteorological 
parameters (2-m temperature and relative humidity), snow, and soil moisture, soil 
temperature, and snow temperature (de Rosnay et al., 2022). The screen level analysis and 
the snow analysis are conducted using a 2D-OI (2-Dimensional Optimal Interpolation). The 
soil temperature and snow temperature analyses are conducted using a 1D-OI. The soil 
moisture analysis is conducted using a simplified Extended Kalman Filter (SEKF) approach. 
The LDAS runs twice per day using 12-hour data assimilation windows. It can be used in a 
coupled (i.e. online) mode in the IFS where it is weakly coupled with the atmospheric analysis 
or in an offline mode forced by ERA5 reanalysis or operational meteorology. In its operational 
configuration, the SEKF approach updates the volumetric soil moisture of the first three soil 
layers of ecLand by assimilating the aforementioned pseudo-observations of 2-metre 
temperature and relative humidity, in combination with surface soil moisture retrievals from 
ASCAT. A Cumulative Distribution Function (CDF) matching is applied to the ASCAT soil 
moisture product prior to its assimilation. In the coupled data assimilation configuration, SMOS 
soil moisture products are also assimilated. 

In this work, the assimilation of SIF or ASCAT are achieved using the SEKF. The analysis is 
calculated using the following Kalman filter equations:  
 

xa = xb + K (y - H(xb))          (1) 
K = BHT (R + HBHT)-1         (2) 

where xa is the analysis, xb is the model background, y are the observations, H is the 
observation operator, H contains the Jacobians to link the model variables to the observed 
variables, B is the background error covariance matrix and R is the observation error 
covariance matrix, respectively. K is the Kalman gain and the innovation term (y - H(xb)) 
represents the departure between the observation and the model background in the 
observation space.  
 

4.2 Assimilation of SIF in the offline LDAS 

4.2.1 SIF ML observation operator 

A ML-based observation operator was developed for assimilating SIF satellite observations at 
0.1° spatial resolution and 8-day temporal resolution to update the LAI climatology in the offline 
LDAS. It relies on the assumption that at these spatial and temporal resolutions, the SIF signal 
is mainly driven by LAI for most vegetation types. 

The ML model is based on the eXtreme Gradient Boosting (XGBoost) technique and was 
trained using the Copernicus Land Monitoring Service (CLMS) satellite LAI, week of the year, 
latitude and longitude as predictors. The ML model was trained over the 2019-2020 period, 
the hyperparameters were tuned over 2021 and the model was evaluated over 2022. Barren 
and desertic areas, orographic areas, snow and frozen soil areas and water bodies, for which 
the SIF signal is too uncertain or not meaningful, were removed from the training dataset. 

 

4.2.2 Implementation in the offline LDAS 

The assimilation of SIF was conducted into the offline LDAS forced by the ERA5 atmospheric 
reanalysis (Hersbach et al, 2020). The rationale for using the offline LDAS is that the SIF 
observation operator was not implemented in the coupled IFS model and that the use of the 
offline LDAS is a preparatory step to explore the potential impact of assimilation of SIF on 
coupled IFS forecasts before being implemented in the coupled data assimilation.  
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The SIF assimilation is conducted using the SEKF to update the ecLand LAI climatology once 
per day. The finite difference method was used to compute the Jacobians of SIF with respect 
to LAI. LAI increments are computed only when the Jacobians are positive and below 0.8 to 
filter out spurious correlations between SIF and LAI. The SIF observation error and the LAI 
background error was set to 0.6 mW m−2 nm−1 sr−1 and of 1 m2 m-2 respectively. 

4.2.3 SIF data assimilation experiments 

The implementation of the SIF data assimilation was conducted in two steps: 

First, SIF is assimilated in the offline LDAS to update the ecLand LAI climatology for the year 
2022. Soil moisture is also analysed with the assimilation of 2 m temperature and humidity 
and ASCAT soil moisture. The analysis of soil moisture and LAI are conducted simultaneously 
within each assimilation window. But in the present work, the assimilation of SIF affects only 
LAI and not soil moisture. The LAI increments are evaluated against the CLMS satellite LAI 
product (see results in 5.1.1). 

The updated LAI resulting from the SIF assimilation in the offline LDAS is used to feed coupled 
IFS experiments instead of the default LAI climatology. The experiments are conducted over 
summer 2022 from 01-06-2022 to 31-08-2022. A control IFS experiment based on the default 
LAI climatology was also run. The impacts on GPP, soil moisture and low-meteorological fields 
are assessed (see section 4.4 and results in 5.1.2). 

 

4.3 Assimilation of ASCAT backscatter in the coupled data assimilation 
system 

4.3.1 ASCAT backscatter ML-based observation operator 

A four-year training database (2016-2019), which relates ASCAT backscatter at 40 to ERA-
5 reanalysis variables was used. The ERA-5 model fields were interpolated at the time and 
location of the ASCAT observations. The spatial and temporal sampling of the training 
database is that of ASCAT (25 km and daily frequency over most locations). The IFS model 

fields used to predict ASCAT backscatter at 40 include soil moisture and soil temperature in 
the first 3 soil layers (up to 1m depth) and LAI. Frozen soil, water bodies, snow area and 
mountain area were excluded from the training database. The ASCAT ML model was trained 
over the 2016-2018 period and tested over 2019. As reported in the CORSO report D4-2, a 
feedforward neural network with 4 hidden layers, 60 neurons showed overall good 

performances to predict the ASCAT backscatter at 40 signal at global scale (Garrigues et al., 
2024). 

4.3.2 Implementation in the IFS 

A new entry for ASCAT backscatter at 40 was created in the IFS observation database to 
enable its use in the online LDAS. The ML observation operator, developed with the 
PYTORCH package, was interfaced in the IFS Fortran code using the INFERO package 
developed at ECMWF. 

The implementation in the IFS was achieved in two steps.  

First, ASCAT backscatter at 40 was assimilated in the coupled LDAS to analyse soil moisture 
only. The Jacobians of backscatter with respect to soil moisture were computed in finite 
difference using a perturbation size of 0.01 m3 m-3 (de Rosnay et al., 2013). The Jacobian 
values which were below and above zero and 30 dB m3 m-3, respectively, were filtered out to 
avoid spurious negative correlations between soil moisture and the backscatter signal. The 
ASCAT observation error standard deviation was computed as the standard deviation of the 
first guess departure (difference between the observed backscatter from ASCAT and the 
simulated backscatter from the ML observation operator) and was equal to 0.9 dB. A 
background error of 0.02 m3 m-3 was used for soil moisture following the operational 
configuration of the SEKF in IFS cycle 49r1. 

https://infero.readthedocs.io/en/latest/
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Then, LAI was added in the control vector to update it from the assimilation of ASCAT 
backscatter. However, since LAI is not a prognostic variable but a prescribed seasonally 
varying climatology the updated LAI is simply used to correct for the climatological value 
without any prognostic propagation. This aspect will be investigated in a future work once a 
prognostic LAI is in place in the IFS. 

4.3.3 ASCAT data assimilation experiments 

We first conducted IFS experiments where only the soil moisture of the first three soil layers 
are updated and not LAI. The objective is to assess the impact of assimilating ASCAT 
backscatter instead of the ASCAT soil moisture product on the soil moisture analysis and to 
evaluate the added value for the forecasts of GPP, soil moisture and 2m temperature and 
humidity. Separate experiments with the assimilation of ASCAT backscatter and ASCAT soil 
moisture retrieval were performed using two distinct configurations: 

1) Sensitivity configuration: To isolate the impact of using ASCAT observations on the 
soil moisture increments, the assimilation of 2 m temperature and humidity and 
SMOS soil moisture were switched off.  

2) Operational configuration: The experiments were run using ASCAT soil moisture or 
ASCAT backscatter along with the rest of observations which are used in the 
operational configuration of the soil moisture analysis.  

In each configuration, we compared the soil moisture increments of the superficial soil layer 
and the root-zone (equivalent to 1 m of topsoil) obtained with the assimilation of ASCAT 
backscatter and ASCAT soil moisture. We evaluated the impact on GPP and NWP fields (2m 
temperature and humidity). 
 
In a second step, we performed an IFS experiment where ASCAT backscatter was assimilated 
and both soil moisture and LAI were analysed. The experiment was done using the operational 
configuration where all the observations of soil moisture analysis were exploited. The 
evaluation was focused on the total LAI increments. 
 
The IFS coupled experiments were conducted from the 1/06/2022 to 31/08/2022. For each 
configuration, we compared the experiment based on the assimilation of ASCAT backscatter 
with the one conducted with the assimilation of ASCAT soil moisture retrieval which is 
considered as the control (see results in 5.2.1). 
 

Experiment 
names 

Configurations Control vector ASCAT 
observations 

Sens_B40 Sensitivity Soil moisture Backscatter 40 

Sens_SM Sensitivity Soil moisture Soil moisture 
retrieval 

Oper_B40 Operational Soil moisture Backscatter 40 

Oper_SM Operational Soil moisture Soil moisture 
retrieval 

Oper_B40_LAI Operational Soil moisture 
and LAI 

Backscatter 40 

 
Table 1: List of IFS experiments with the assimilation of ASCAT data 

 

4.4 Evaluation of GPP, soil moisture and low-level meteorological fields IFS 
forecasts: 

The performances of each GPP forecast were quantified by the RMSE (root mean square 
error) between the predicted GPP and the FluxSat GPP used as a reference. The impact of 
the SIF or ASCAT assimilation on the GPP forecast performance was quantified by the GPP 
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RMSE differences between the IFS experiments with the assimilation of SIF or ASCAT and 
the control experiments based on the default operational configuration. FluxSat GPP was used 
as a reference. 

Surface and root-zone soil moisture predictions were compared to in situ measurements from 
various measurement networks across the world (see section 3.5). The performances were 
quantified by the anomaly correlation of soil moisture computed in time at each in situ site and 
then averaged per network. The anomalies were computed as the difference between the soil 
moisture measurement time series and a centered 35-day moving average (more detailed can 
be found in Fairbairn et al., 2019). 

Meteorological fields (2m temperature and humidity, geopotential height) were evaluated 
using the operational analysis as reference by computing the RMSE of the forecast and the 
operational analysis. The performances of each experiment were quantified by the RMSE 
normalized differences between the IFS experiment with the assimilation of SIF or ASCAT 
and the IFS control experiment, using the operational IFS analysis as a reference (Geer et al., 
2016).  

The evaluation results are presented in Section 5.1.2 for SIF and 5.2.2, 5.2.3 for ASCAT. 

 

5 Results 

5.1 Assimilation of SIF 

5.1.1 Evaluation of LAI increments 

Figure 1 highlights that the impacts of assimilating SIF compared to the use of the LAI 
climatology is limited to specific regions. The improvement of LAI with respect to the CLMS 
satellite product mainly concerns cropland as illustrated by the soybean production region in 
South America, the corn and wheat areas in the United-States and the wheat production areas 
in Australia (Figure 2). The assimilation of SIF generates meaningful regional spatial patterns 
of LAI increments in response to climate anomalies such as the reduction of LAI over Western 
Europe in July 2022 (Figure 3) which is consistent with the soil moisture deficit reported for 
the summer 2022 over Western Europe (C3S, 2023). However, LAI is degraded over tropical 
rainforests over the Amazon, central Africa and Indonesia.  

 

 

Figure 1: Impact of SIF data assimilation shown as RMSE differences with vs without SIF 
data assimilation, using CLMS LAI as a reference, for 2022, at global scale. Blue and red 
colours indicate improvement and degradation of LAI, respectively. 
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Figure 2: As Figure 1 but zoomed over North America, Australia and South America.  

 

 

Figure 3: Regional monthly mean of LAI increments (unit: m2 m-2) over Europe in July 2022 

 

5.1.2 Impact on coupled model forecasts  

5.1.2.1 GPP 

Figure 4 represents the global map of the GPP RMSE differences between the experiments 
done with versus without the updated LAI produced from the assimilation of SIF. The GPP 
RMSE of each experiment is computed using the FluxSat GPP dataset as reference. Figure 
4 indicates mixed results with a degradation of GPP in the Amazon, in part of North America 
and Eurasia and local improvements in Africa, North America and central Europe. Over North 
America, GPP is improved over the wheat Canadian region and the US corn belt, but it is 
degraded over the US wheat belt.  
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Figure 4: Impact of SIF DA on GPP forecast performance shown as GPP RMSE differences 
with vs without SIF DA, using FluxSat as reference, for summer 2022, at global scale and over 
North America. 

 

5.1.2.2 Soil moisture  

The assimilation of SIF generally leads to slight but non-significant improvements in the 
surface soil moisture forecast. The improvement is larger for the root-zone soil moisture which 
is expected since the assimilation of SIF improves the representation of vegetation processes. 
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Figure 5: Evaluation of surface and root-zone soil moisture IFS prediction against in situ soil 
moisture measurements for various networks (names reported along the x-axis). The 
performance score is quantified by the anomaly correlation computed in time for each in situ 
network. 

 

5.1.2.3 NWP fields 

Figure 6 shows that the use of the updated LAI in the IFS forecast leads to degradation of 2 
m temperature and humidity. While improvements are observed at short lead time (12h) over 
the Amazon for both 2m temperature and humidity, Central Europe for 2m temperature and 
Australia for 2m humidity, the signal does not persist over longer lead times and a steady 
degradation of 2m temperature and humidity appears over the Amazon from T+24h.  

Figure 7 shows, however, a positive impact of the updated LAI on the general circulation over 
the tropic region as shown by the reduction in RMSE of geopotential height in the troposphere 
which persists across lead times. 
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Figure 6: Impact of SIF data assimilation on 2 m temperature (left panel) and 1000 hPa 
humidity (right panel) forecasts from the IFS at different lead times (12h to 168h forecast) for 
the June-August 2022 period. The maps show the difference in RMSE between the 
experiment conducted with the updated LAI and the control based on the LAI climatology. The 
evaluation is done against the operational analysis. 
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Figure 7: Impact of SIF data assimilation on geopotential height (Z) forecast from the IFS at 
different lead times (12h to 216h forecast) for the June-August 2022 period. The plots show 
the differences in RMSE between the experiment conducted with the updated LAI and the 
control based on the LAI climatology as a function of latitude and pressure level. The 
evaluation is done against the operational analysis by computing the RMSE of the forecast of 
geopotential height from each experiment and the analysis. 

 

5.1.3 Discussion  

The assimilation of SIF mainly improves the LAI climatology over cropland for which the LAI 
climatology is associated with larger uncertainties due to the large interannual variability 
generated by agricultural practices. The SIF ML-based observation operator trained on 
satellite LAI captures the strong statistical correlations between the SIF signal and LAI over 
cropland. This highlights that the SIF satellite retrieval is mainly influenced by the seasonal 
variability of the vegetation structure at this spatial and temporal resolution. The lower 
performances obtained for rainforests are related to the larger uncertainties in satellite LAI 
over dense vegetation and the inability of the ML observation operator to represent the SIF 
variability due to vegetation physiology which is the main driver of the SIF signal for this 
vegetation type. The improvement in LAI does not lead to systematic improvement in GPP 
which can be due to limitations in the current representation of vegetation in ecLand and the 
prevailing impact of other sources of biases in the coupled land-atmosphere model. Besides, 
satellite-based GPP estimates, used here as reference for the evaluation, are not direct 
measurements of GPP and are associated with various sources of uncertainties (Jung et al., 
2020). Multi-GPP datasets should be exploited in future works to account for the uncertainties 
in the reference datasets. Finally, the lack of improvement of low-level meteorological fields 
can be due to the strong tuning of surface-atmosphere interactions in the IFS which limits the 
propagation of improved land surface variables into the atmospheric fields. 
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5.2 Evaluation of the assimilation of ASCAT backscatter 

In sections 5.2.1 to 5.2.3 below, we present the results of experiments where only soil moisture 
is analysed. In section 5.2.4, the LAI increments produced from the experiment conducted 
with the analysis of both soil moisture and LAI are assessed.  

 

5.2.1 Impact of assimilating ASCAT backscatter on soil moisture analysis 

5.2.1.1 Comparison of soil moisture increments between ASCAT soil moisture 
and ASCAT backscatter data assimilation 

Figures 8 to 10 display global maps of seasonal mean of soil moisture increments obtained in 
Summer 2022 from the assimilation of ASCAT using either backscatter (left) or soil moisture 
retrieval (right). In the absence of observations, null increment values were filtered out when 
the temporal average is computed. 

For the sensitivity configuration, the increments of surface and root-zone soil moisture 
generated by the assimilation of ASCAT backscatter versus soil moisture retrieval exhibit 
different spatial distribution and order of magnitude (Figure 8 and 9). The assimilation of 
backscatter produces larger variability of increments with some contrasted structures. The 
difference in magnitude is particularly important for the root-zone soil moisture which reflects 
the higher sensitivity of the ML observation operator to the soil moisture of the deep soil layers. 
Figure 8 also highlights the larger spatial coverage of increments when assimilating 
backscatter than soil moisture observations. This is particularly clear in tropical rainforest 
regions where the soil moisture retrievals were filtered out during the quality control process.  

For the operational configuration, the differences in the increment’s magnitude and spatial 
distribution are smaller compared to the sensitivity configuration, because the increments are 
strongly driven by the assimilation of 2 m temperature and humidity pseudo-observations. But 
the assimilation of backscatter still produces larger soil moisture increments in the root-zone 
than the assimilation of retrieved soil moisture. 

 

Figure 8: Seasonal average of surface soil moisture increments (m3 m-3) in the sensitivity 
configuration where only ASCAT observations are assimilated, using backscatter (left) and 
retrieved soil moisture (right), for the summer 2022 period.   
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Figure 9: Same as Figure 8 but for the root zone (top metre of soil). 

 

Figure 10: Seasonal average of surface soil moisture increments (m3 m-3) in the operational 

configuration using the full observing system including SMOS and low-level meteorological 
field observations, and ASCAT backscatter (left) and soil moisture (right), for the summer 2022 
period  

 

Figure 11: Same as Figure 10 for the root zone (top metre of soil). 
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5.2.1.2 Evaluation against in situ soil moisture measurements 

The verification performed against various soil moisture in situ networks displayed in Figure 
12 shows that, compared to the assimilation of retrieved soil moisture, the assimilation of 
backscatter leads to slight improvements in the simulated surface and root-zone soil moisture.  

 

 

Figure 12: Evaluation of surface and root-zone soil moisture IFS prediction (m3 m-3) against 
in situ soil moisture measurements (m3 m-3) for various networks (names reported along the 
x-axis). The performance score is quantified by the anomaly correlation computed in time for 
each in situ network. 

 

5.2.2 Impact of assimilating ASCAT backscatter on GPP  

Figure 13 represents the global map of the GPP RMSE differences between the experiments 
done with the assimilation of ASCAT backscatter versus the assimilation of ASCAT soil 
moisture. The GPP RMSE of each experiment is computed using the FluxSat GPP dataset as 
reference. Figure 13 shows that the assimilation of ASCAT backscatter in lieu of ASCAT soil 
moisture leads to improvements in GPP forecast over Northern latitude particular in Europe 
and locations in South America and Australia while more mixed results are obtained over 
tropical rainforest and in North America. 
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Figure 13: Impact of ASCAT backscatter on GPP forecast performances shown as GPP 
RMSE differences between the assimilation of ASCAT backscatter versus the assimilation of 
ASCAT soil moisture, using FluxSat as reference, for summer 2022 for the operational 
configuration. 

 

5.2.3 Impact of assimilating ASCAT backscatter on NWP forecasts 

 

 

Figure 14: Impact of ASCAT backscatter on forecast performance of temperature vertical 
profile shown as RMSE normalized differences between the assimilation of ASCAT 
backscatter vs ASCAT soil moisture using the operational analysis as reference, for summer 
2022, for the operational configuration. The RMSE difference is normalized by dividing by the 
RMSE related to the experiment done with ASCAT soil moisture. Cross hatching indicates 
statistically significant differences. The plots show the vertical distribution of RMSE across 
latitudes for distinct lead times. 
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Figure 15: Impact of ASCAT backscatter on forecast performance of humidity vertical profile 
shown as RMSE differences between the assimilation of ASCAT backscatter vs ASCAT soil 
moisture using the operational analysis as reference, for summer 2022, for the operational 
configuration. The RMSE difference is normalized by dividing by the RMSE related to the 
experiment done with ASCAT soil moisture. Cross hatching indicates statistically significant 
differences. The plots show the vertical distribution of RMSE across latitudes for distinct lead 
times. 

 

Figure 14 shows significant degradation in low-level temperature located in the tropics and 
Northern latitude in the operational configuration when ASCAT backscatter is used instead of 
soil moisture. Figure 15 indicates significant degradation of low-level humidity at Northern 
latitudes. The maps of RMSE (not shown here) indicate degradations across Europe and 
North America and some improvements in South America and Africa.  

5.2.4 Impact on LAI increments 

 

Figure 16: Global seasonal mean of LAI increments (unit: m2 m-2) in summer 2022.  
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Figure 16 illustrates results when LAI is included along with soil moisture in the data 
assimilation control vector. It illustrates the capability of the ASCAT backscatter data 
assimilation system to produce LAI increments and update the IFS LAI climatology. The 
magnitude of the increments generated by the assimilation of backscatter is smaller than the 
one produced by SIF data assimilation but the comparison is difficult given SIF was 
assimilated in the offline LDAS while ASCAT is assimilated in the coupled LDAS where the 
weak coupling between the surface analysis and the atmospheric analysis plays a role. 

 

5.2.5 Discussion 

The differences in soil moisture increments generated by the assimilation of ASCAT 
backscatter versus soil moisture can be related to differences in information content between 

the backscatter signal and the soil moisture retrieval. The backscatter normalized at 40 is 
closer to the satellite measurement while the soil moisture retrieval is derived from a retrieval 
algorithm that relies on specific assumptions and vegetation maps. Besides, the application of 
a CDF matching to soil moisture retrieval and a ML observation operator used to simulate the 
model equivalent of ASCAT backscatter can play a role. Finally, differences in the quality 
control, particularly in the tropical regions, can generate differences in the number and location 
of the assimilated observations. 

The assimilation of backscatter improves the simulation of some land surface variables such 
as soil moisture and GPP. The impact on GPP can result from improvements in soil moisture 
which was proved to be a key driver of the land carbon uptake variability (Humphrey et al., 
2021). However, the degradation obtained for low-level meteorological fields shows that the 
improvement of land surface variables does not systematically translate into improvement in 
the atmosphere fields because of limitations in the vegetation representation in ecLand 
(prescribed LAI) and the strong tuning of land-surface interactions which are very well-known 
aspects of the IFS. 
 

6 Conclusions 

This work demonstrates the potential of ML observation operators to exploit land observations 
and strengthen the coupled water and carbon cycle land data assimilation system in the IFS. 
The assimilation of SIF provides a more realistic representation of the vegetation temporal 
dynamics over croplands which is very relevant for the monitoring of emissions over 
agriculture regions in the future CO2MVS. The assimilation of ASCAT backscatter represents 
a great potential for the joint analysis of soil moisture and leaf area index in the coupled model. 
The first results obtained by updating only soil moisture show positive impacts on soil moisture 
and GPP but some degradations for the meteorological fields. Enhanced consistency between 
surface improvements and atmospheric impact is expected with the prognostic LAI which is 
under development in the IFS.  

This study also highlights that the improvement in vegetation processes representation 
provided by the assimilation of SIF or backscatter does not systematically translate into 
improved forecast scores for 2m temperature and humidity variables. This reflects the strong 
tuning of land-surface interactions which can limit the propagation of improved land surface 
variables into the atmospheric fields. These results need to be refined, and possible 
improvements need to be reassessed with the ongoing revision of the parametrization of land 
surface-atmosphere interactions and the development of a new prognostic LAI in the IFS.  
 

The main recommendations and steps forwards are: 

▪ Retrain the ML observation operator approach with the most recent IFS cycle 
to take advantage of the upcoming improvements of the vegetation process 
modelling in the IFS.  
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▪ Use the PYTORCH differentiation functionality to compute the ML observation 
operator Jacobian instead of using the finite difference method which 
substantially increases the computing cost in coupled simulations. 

▪ Extend SIF and ASCAT backscatter data assimilation to the upcoming ecLand 
prognostic LAI in both the offline and online LDAS.  

▪ Assess the joint analysis of soil moisture and LAI in the IFS coupled model with 
a focus on strong surface-atmosphere coupling conditions such as drought. 

▪ Exploit SIF and ASCAT backscatter in purely data-driven forecast systems 
which may be capable to extract more efficiently the information content from 
those satellite observations compared to a traditional Earth System Model 
which can be limited by the lack of accurate enough representation of land 
surface processes. 
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