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1 Executive Summary

The objective of this work is to assimilate active microwave and Solar Induced Fluorescence
(SIF) satellite observations in the Integrated Forecasting System (IFS) to update Leaf Area
Index (LAI) and assess the impact on the IFS predictions of the Gross Primary Production
(GPP), soil moisture and low-level meteorological fields (2m temperature and humidity). This
work relies on the development of machine learning (ML)-based observation operators for (1)
the normalized backscatter at 40° from the ASCAT (Advanced Scatterometer) instrument
onboard METOP-B and C satellites and (2) SIF derived from TROPOMI (TROPOspheric
Monitoring Instrument) onboard Copernicus Sentinel-5p satellite, which were described in the
report D4-2 (December 2024). For SIF, the data assimilation was performed in the offline Land
Data Assimilation (LDAS) system. The updated LAl was used to initialise IFS coupled model
forecasts and the impacts on the IFS forecast of GPP, soil moisture, and low-level
meteorological fields were evaluated. For ASCAT backscatter, the assimilation was directly
conducted in the coupled LDAS in the IFS and the impacts of assimilating ASCAT backscatter
on the IFS forecast performances were assessed against the operational configuration which
relies on the assimilation of ASCAT soil moisture retrieval.
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2 Introduction

2.1 Background

To enable the European Union (EU) to move towards a low-carbon economy and implement
its commitments under the Paris Agreement, a binding target was set to cut emissions in the
EU by at least 40% below 1990 levels by 2030. European Commission (EC) President von
der Leyen committed to deepen this target to at least 55% reduction by 2030. This was further
consolidated with the release of the Commission's European Green Deal on the 11th of
December 2019, setting the targets for the European environment, economy, and society to
reach zero net emissions of greenhouse gases in 2050, outlining all needed technological and
societal transformations that are aiming at combining prosperity and sustainability. To support
EU countries in achieving the targets, the EU and European Commission (EC) recognised the
need for an objective way to monitor anthropogenic CO, emissions and their evolution over
time.

Such a monitoring capacity will deliver consistent and reliable information to support informed
policy- and decision-making processes, both at national and European level. To maintain
independence in this domain, it is seen as critical that the EU establishes an observation-
based operational anthropogenic CO. emissions Monitoring and Verification Support (MVS)
(CO2MVS) capacity as part of its Copernicus Earth Observation programme.

The CORSO research and innovation project will build on and complement the work of
previous projects such as CHE (the CO2 Human Emissions), and CoCO2 (Copernicus CO2
service) projects, both led by ECMWEF. These projects have already started the ramping-up
of the CO2MVS prototype systems, so it can be implemented within the Copernicus
Atmosphere Monitoring Service (CAMS) with the aim to be operational by 2026. The CORSO
project will further support establishing the new CO2MVS addressing specific research &
development questions.

The main objectives of CORSO are to deliver further research activities and outcomes with a
focus on the use of supplementary observations, i.e., of co-emitted species as well as the use
of auxiliary observations to better separate fossil fuel emissions from the other sources of
atmospheric CO,. CORSO will deliver improved estimates of emission factors/ratios and their
uncertainties as well as the capabilities at global and local scale to optimally use observations
of co-emitted species to better estimate anthropogenic CO, emissions. CORSO will also
provide clear recommendations to CAMS, ICOS, and WMO about the potential added-value
of high-temporal resolution CO, and APO observations as tracers for anthropogenic
emissions in both global and regional scale inversions and develop coupled land-atmosphere
data assimilation in the global CO2MVS system constraining carbon cycle variables with
satellite observations of soil moisture, LAl, SIF, and Biomass. Finally, CORSO will provide
specific recommendations for the topics above for the operational implementation of the
CO2MVS within the Copernicus programme.

2.2 Scope of this deliverable
2.2.1 Objectives of this deliverable

The objective of this work is to evaluate the impact of the assimilation of active microwave and
Solar Induced Fluorescence (SIF) satellite observations on the Integrated Forecast System
(IFS) prediction of the carbon and water fluxes and low-level meteorological fields.
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2.2.2 Work performed in this deliverable

We implemented the assimilation of (1) the normalized backscatter at 40° from the ASCAT
(Advanced Scatterometer) instrument onboard METOP-B and C satellites in the coupled land
data assimilation system (LDAS) in the IFS and (2) Solar Induced Fluorescence (SIF) derived
from TROPOMI (TROPOspheric Monitoring Instrument) onboard Copernicus Sentinel-5p
satellite, in the offline LDAS. This work relies on the development of machine learning (ML)-
based observation operators for both ASCAT backscatter and SIF which were described in
the report D4-2 (December 2024). The SIF data assimilation developments were first
presented in the report D4-3 (December 2024) as well as in Garrigues et al. 2025a, 2025b.
This report presents the implementation of both SIF and ASCAT data assimilation in the offline
and coupled, respectively, LDAS. For the SIF data assimilation configuration, the updated LAI
was used to initialise IFS coupled model forecasts and the impacts on the IFS forecast of
Gross Primary Production (GPP), soil moisture, and low-level meteorological fields (2 m
temperature and humidity) were evaluated. For ASCAT, the impacts of assimilating ASCAT
backscatter on the IFS forecast performances were assessed against the operational
configuration which relies on the assimilation of ASCAT soil moisture retrieval.

The SIF data assimilation methodology and the associated results are also presented in
Garrigues et al. (2025a,b).

2.2.3 Deviations and counter measures

None reported.

2.3 Project partners:

Partners

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER ECMWF
FORECASTS

AKADEMIA GORNICZO-HUTNICZA IM. STANISLAWA AGH
STASZICA W KRAKOWIE

BARCELONA SUPERCOMPUTING CENTER - CENTRO BSC
NACIONAL DE SUPERCOMPUTACION

COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES | CEA
ALTERNATIVES

KAMINSKI THOMAS HERBERT iLab
METEO-FRANCE MF
NEDERLANDSE ORGANISATIE VOOR TOEGEPAST TNO
NATUURWETENSCHAPPELIJK ONDERZOEK TNO

RIJKSUNIVERSITEIT GRONINGEN RUG
RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG UHEI
LUNDS UNIVERSITET ULUND
UNIVERSITE PAUL SABATIER TOULOUSE I UT3-CNRS
WAGENINGEN UNIVERSITY Wu
EIDGENOSSISCHE MATERIALPRUFUNGS- UND EMPA
FORSCHUNGSANSTALT

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH ETHZ
UNIVERSITY OF BRISTOL UNIVBRIS
THE UNIVERSITY OF EDINBURGH UEDIN
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3 Data

3.1 ASCAT backscatter dataset

The Advanced Scatterometer (ASCAT) data consist of C-band radar backscatters (sigma0).
In this work, we use the ASCAT sigma0 normalised at an incidence angle of 40° which is
available from the EUMETSAT HSAF service. Digital Object Identifier (DOI) is:
https://doi.org/10.15770/EUM_SAF _H 0009. Four years of ASCAT covering the period 2016
to 2019 was used in this work to develop a ML-based observation operator for assimilating
sigma0 in the IFS. Frozen soil, water bodies, snow areas and mountain areas were excluded
from the observation database.

3.2 TROPOSIF dataset

The TROPOSIF dataset (Guanter et al, 2021), which consists of global SIF observations from
TROPOMI (TROPOspheric Monitoring Instrument) on board Sentinel-5P satellite, was used
for the period from 2019 to 2022. The data with view and solar zenith angles above 60° and
70°, respectively, were filtered out. We used here SIF retrievals gridded at 0.1° spatial
resolution and temporally averaged over 8 days to enhance the signal-to-noise ratio of SIF
and to minimize the uncertainties caused by geometric registration errors.

3.3 LAl satellite-based dataset

The Copernicus Land Monitoring Service (CLMS) LAI dataset was used to evaluate the
updated LAl from the land data assimilation system (CLMS, 2025). The CLMS LAl was
estimated from the surface reflectances derived from the VEGETATION instrument on board
PROBA-V before August 2020 and from the Ocean and Land Colour Instrument (OLCI) on
board Sentinel-3 since September 2020 (CLMS, 2025). We used the RT1 version of LAl
CLMS. For this study, the dataset was resampled at 0.1° spatial resolution and 8-day temporal
frequency.

3.4 GPP satellite-based dataset

The IFS forecasts of GPP were assessed against the FluxSat GPP dataset, version 2.0
(Joiner and Yoshida 2021). FluxSat GPP is retrieved from MODIS reflectances using a neural
network trained on GPP FLUXNET measurements. In this work, the FluxSat daily product was
resampled at 8-day temporal frequency and 0.1° resolution spatial resolution.

3.5 In situ soil moisture measurements

The evaluation of the soil moisture analysis and forecast was performed using various in situ
measurements from distinct measurement networks worldwide (e.g. SMOSMANIA in France,
Albergel et al, 2011; USCRN in the US, Bell et al., 2013). These datasets are described in
Fairbairn et al. (2019).

4 Methods

4.1 IFS land model and the land data assimilation system (LDAS)
4.1.1 The ecLand IFS land model

This work is based on the IFS cycle 49r1 and its land model ecLand (Boussetta et al., 2021).
ecLand comprises 4 soil layers of 0.07 m, 0.21 m, 0.72 m and 1.89 m thicknesses. Soll
moisture is analysed in the first three soil layers which represent the root-zone of 1m depth.
EcLand employs the Faguhar photosynthesis model. The vegetation classes are derived from
the European Space Agency-Climate Change Initiative Land Use/Land Cover (ESA CCI)
dataset. ecLand relies on a satellite-derived monthly mean LAI climatology (Boussetta et
al., 2021; Boussetta and Balsamo, 2021). To distinguish between low (grassland, crop,
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shrubland) and high (forest) vegetation types, the ecLand LAl is disaggregated into a low and
high LAI for each grid cell.

4.1.2 The IFS Land data assimilations system (LDAS)

The IFS LDAS is composed of several components for the low-level meteorological
parameters (2-m temperature and relative humidity), snow, and soil moisture, soil
temperature, and snow temperature (de Rosnay et al., 2022). The screen level analysis and
the snow analysis are conducted using a 2D-Ol (2-Dimensional Optimal Interpolation). The
soil temperature and snow temperature analyses are conducted using a 1D-Ol. The soil
moisture analysis is conducted using a simplified Extended Kalman Filter (SEKF) approach.
The LDAS runs twice per day using 12-hour data assimilation windows. It can be used in a
coupled (i.e. online) mode in the IFS where it is weakly coupled with the atmospheric analysis
or in an offline mode forced by ERAS5 reanalysis or operational meteorology. In its operational
configuration, the SEKF approach updates the volumetric soil moisture of the first three soil
layers of ecLand by assimilating the aforementioned pseudo-observations of 2-metre
temperature and relative humidity, in combination with surface soil moisture retrievals from
ASCAT. A Cumulative Distribution Function (CDF) matching is applied to the ASCAT soill
moisture product prior to its assimilation. In the coupled data assimilation configuration, SMOS
soil moisture products are also assimilated.

In this work, the assimilation of SIF or ASCAT are achieved using the SEKF. The analysis is
calculated using the following Kalman filter equations:

Xa= Xp + K (y - H(Xb)) (1)
K=BH" (R + HBH")"' (2)
where Xa is the analysis, x» is the model background, y are the observations, H is the
observation operator, H contains the Jacobians to link the model variables to the observed
variables, B is the background error covariance matrix and R is the observation error
covariance matrix, respectively. K is the Kalman gain and the innovation term (y - H(x))
represents the departure between the observation and the model background in the

observation space.

4.2 Assimilation of SIF in the offline LDAS
4.2.1 SIF ML observation operator

A ML-based observation operator was developed for assimilating SIF satellite observations at
0.1° spatial resolution and 8-day temporal resolution to update the LAI climatology in the offline
LDAS. It relies on the assumption that at these spatial and temporal resolutions, the SIF signal
is mainly driven by LAI for most vegetation types.

The ML model is based on the eXtreme Gradient Boosting (XGBoost) technique and was
trained using the Copernicus Land Monitoring Service (CLMS) satellite LAI, week of the year,
latitude and longitude as predictors. The ML model was trained over the 2019-2020 period,
the hyperparameters were tuned over 2021 and the model was evaluated over 2022. Barren
and desertic areas, orographic areas, snow and frozen soil areas and water bodies, for which
the SIF signal is too uncertain or not meaningful, were removed from the training dataset.

4.2.2 Implementation in the offline LDAS

The assimilation of SIF was conducted into the offline LDAS forced by the ERAS atmospheric
reanalysis (Hersbach et al, 2020). The rationale for using the offline LDAS is that the SIF
observation operator was not implemented in the coupled IFS model and that the use of the
offline LDAS is a preparatory step to explore the potential impact of assimilation of SIF on
coupled IFS forecasts before being implemented in the coupled data assimilation.

D4.4 8
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The SIF assimilation is conducted using the SEKF to update the ecLand LAl climatology once
per day. The finite difference method was used to compute the Jacobians of SIF with respect
to LAL LAl increments are computed only when the Jacobians are positive and below 0.8 to
filter out spurious correlations between SIF and LAI. The SIF observation error and the LAl
background error was set to 0.6 mW m™ nm™" sr™' and of 1 m? m2 respectively.

4.2.3 SIF data assimilation experiments
The implementation of the SIF data assimilation was conducted in two steps:

First, SIF is assimilated in the offline LDAS to update the ecLand LAI climatology for the year
2022. Soil moisture is also analysed with the assimilation of 2 m temperature and humidity
and ASCAT soil moisture. The analysis of soil moisture and LAl are conducted simultaneously
within each assimilation window. But in the present work, the assimilation of SIF affects only
LAl and not soil moisture. The LAl increments are evaluated against the CLMS satellite LAl
product (see results in 5.1.1).

The updated LAl resulting from the SIF assimilation in the offline LDAS is used to feed coupled
IFS experiments instead of the default LAI climatology. The experiments are conducted over
summer 2022 from 01-06-2022 to 31-08-2022. A control IFS experiment based on the default
LAl climatology was also run. The impacts on GPP, soil moisture and low-meteorological fields
are assessed (see section 4.4 and results in 5.1.2).

4.3 Assimilation of ASCAT backscatter in the coupled data assimilation
system

4.3.1 ASCAT backscatter ML-based observation operator

A four-year training database (2016-2019), which relates ASCAT backscatter at 40° to ERA-
5 reanalysis variables was used. The ERA-5 model fields were interpolated at the time and
location of the ASCAT observations. The spatial and temporal sampling of the training
database is that of ASCAT (25 km and daily frequency over most locations). The IFS model
fields used to predict ASCAT backscatter at 40° include soil moisture and soil temperature in
the first 3 soil layers (up to 1m depth) and LAI. Frozen soil, water bodies, snow area and
mountain area were excluded from the training database. The ASCAT ML model was trained
over the 2016-2018 period and tested over 2019. As reported in the CORSO report D4-2, a
feedforward neural network with 4 hidden layers, 60 neurons showed overall good
performances to predict the ASCAT backscatter at 40° signal at global scale (Garrigues et al.,
2024).

4.3.2 Implementation in the IFS

A new entry for ASCAT backscatter at 40° was created in the IFS observation database to
enable its use in the online LDAS. The ML observation operator, developed with the
PYTORCH package, was interfaced in the IFS Fortran code using the INFERO package
developed at ECMWEF.

The implementation in the IFS was achieved in two steps.

First, ASCAT backscatter at 40° was assimilated in the coupled LDAS to analyse soil moisture
only. The Jacobians of backscatter with respect to soil moisture were computed in finite
difference using a perturbation size of 0.01 m® m? (de Rosnay et al., 2013). The Jacobian
values which were below and above zero and 30 dB m® m, respectively, were filtered out to
avoid spurious negative correlations between soil moisture and the backscatter signal. The
ASCAT observation error standard deviation was computed as the standard deviation of the
first guess departure (difference between the observed backscatter from ASCAT and the
simulated backscatter from the ML observation operator) and was equal to 0.9 dB. A
background error of 0.02 m® m?® was used for soil moisture following the operational
configuration of the SEKF in IFS cycle 49r1.
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Then, LAl was added in the control vector to update it from the assimilation of ASCAT
backscatter. However, since LAl is not a prognostic variable but a prescribed seasonally
varying climatology the updated LAl is simply used to correct for the climatological value
without any prognostic propagation. This aspect will be investigated in a future work once a
prognostic LAl is in place in the IFS.

4.3.3 ASCAT data assimilation experiments

We first conducted IFS experiments where only the soil moisture of the first three soil layers
are updated and not LAI. The objective is to assess the impact of assimilating ASCAT
backscatter instead of the ASCAT soil moisture product on the soil moisture analysis and to
evaluate the added value for the forecasts of GPP, soil moisture and 2m temperature and
humidity. Separate experiments with the assimilation of ASCAT backscatter and ASCAT saoill
moisture retrieval were performed using two distinct configurations:
1) Sensitivity configuration: To isolate the impact of using ASCAT observations on the
soil moisture increments, the assimilation of 2 m temperature and humidity and
SMOS soil moisture were switched off.
2) Operational configuration: The experiments were run using ASCAT soil moisture or
ASCAT backscatter along with the rest of observations which are used in the
operational configuration of the soil moisture analysis.

In each configuration, we compared the soil moisture increments of the superficial soil layer
and the root-zone (equivalent to 1 m of topsoil) obtained with the assimilation of ASCAT
backscatter and ASCAT soil moisture. We evaluated the impact on GPP and NWP fields (2m
temperature and humidity).

In a second step, we performed an IFS experiment where ASCAT backscatter was assimilated
and both soil moisture and LAl were analysed. The experiment was done using the operational
configuration where all the observations of soil moisture analysis were exploited. The
evaluation was focused on the total LAl increments.

The IFS coupled experiments were conducted from the 1/06/2022 to 31/08/2022. For each
configuration, we compared the experiment based on the assimilation of ASCAT backscatter
with the one conducted with the assimilation of ASCAT soil moisture retrieval which is
considered as the control (see results in 5.2.1).

Experiment Configurations | Control vector ASCAT
names observations
Sens_B40 Sensitivity Soil moisture Backscatter 40°
Sens_SM Sensitivity Soil moisture Soil  moisture
retrieval
Oper_B40 Operational Soil moisture Backscatter 40°
Oper_SM Operational Soil moisture Soil  moisture
retrieval
Oper_B40_LAIl | Operational Soil  moisture | Backscatter 40°
and LAI

Table 1: List of IFS experiments with the assimilation of ASCAT data

4.4 Evaluation of GPP, soil moisture and low-level meteorological fields IFS
forecasts:

The performances of each GPP forecast were quantified by the RMSE (root mean square
error) between the predicted GPP and the FluxSat GPP used as a reference. The impact of
the SIF or ASCAT assimilation on the GPP forecast performance was quantified by the GPP

D4.4 10



CORSO

RMSE differences between the IFS experiments with the assimilation of SIF or ASCAT and
the control experiments based on the default operational configuration. FluxSat GPP was used
as a reference.

Surface and root-zone soil moisture predictions were compared to in situ measurements from
various measurement networks across the world (see section 3.5). The performances were
quantified by the anomaly correlation of soil moisture computed in time at each in situ site and
then averaged per network. The anomalies were computed as the difference between the soil
moisture measurement time series and a centered 35-day moving average (more detailed can
be found in Fairbairn et al., 2019).

Meteorological fields (2m temperature and humidity, geopotential height) were evaluated
using the operational analysis as reference by computing the RMSE of the forecast and the
operational analysis. The performances of each experiment were quantified by the RMSE
normalized differences between the IFS experiment with the assimilation of SIF or ASCAT
and the IFS control experiment, using the operational IFS analysis as a reference (Geer et al.,
2016).

The evaluation results are presented in Section 5.1.2 for SIF and 5.2.2, 5.2.3 for ASCAT.

5 Results

5.1 Assimilation of SIF
5.1.1 Evaluation of LAl increments

Figure 1 highlights that the impacts of assimilating SIF compared to the use of the LAI
climatology is limited to specific regions. The improvement of LAl with respect to the CLMS
satellite product mainly concerns cropland as illustrated by the soybean production region in
South America, the corn and wheat areas in the United-States and the wheat production areas
in Australia (Figure 2). The assimilation of SIF generates meaningful regional spatial patterns
of LAl increments in response to climate anomalies such as the reduction of LAl over Western
Europe in July 2022 (Figure 3) which is consistent with the soil moisture deficit reported for
the summer 2022 over Western Europe (C3S, 2023). However, LAl is degraded over tropical
rainforests over the Amazon, central Africa and Indonesia.

-020 -015  -010  -0.05 0.00 0.05 0.10 0.15 0.20
Difference in RMSE (m2m-2)

Figure 1: Impact of SIF data assimilation shown as RMSE differences with vs without SIF
data assimilation, using CLMS LAl as a reference, for 2022, at global scale. Blue and red
colours indicate improvement and degradation of LAI, respectively.

D4.4 11



-020 -015 -010 -005 000 005 010 015 020
Difference in RMSE (m2 m)

Figure 2: As Figure 1 but zoomed over North America, Australia and South America.

60°N
55°N
S50°N
45°N .
40°N -

—0.25 0.00 0.25

Figure 3: Regional monthly mean of LAl increments (unit: m? m2) over Europe in July 2022

5.1.2 Impact on coupled model forecasts

5.1.2.1 GPP

Figure 4 represents the global map of the GPP RMSE differences between the experiments
done with versus without the updated LAl produced from the assimilation of SIF. The GPP
RMSE of each experiment is computed using the FluxSat GPP dataset as reference. Figure
4 indicates mixed results with a degradation of GPP in the Amazon, in part of North America
and Eurasia and local improvements in Africa, North America and central Europe. Over North
America, GPP is improved over the wheat Canadian region and the US corn belt, but it is
degraded over the US wheat belt.
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120°W 60°W o 60"E 120°E

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Difference in GPP RMSE (gC m2 day™)

Figure 4: Impact of SIF DA on GPP forecast performance shown as GPP RMSE differences
with vs without SIF DA, using FluxSat as reference, for summer 2022, at global scale and over
North America.

5.1.2.2 Soil moisture

The assimilation of SIF generally leads to slight but non-significant improvements in the
surface soil moisture forecast. The improvement is larger for the root-zone soil moisture which
is expected since the assimilation of SIF improves the representation of vegetation processes.
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Figure 5: Evaluation of surface and root-zone soil moisture IFS prediction against in situ soil
moisture measurements for various networks (names reported along the x-axis). The
performance score is quantified by the anomaly correlation computed in time for each in situ
network.

5.1.2.3 NWP fields

Figure 6 shows that the use of the updated LAl in the IFS forecast leads to degradation of 2
m temperature and humidity. While improvements are observed at short lead time (12h) over
the Amazon for both 2m temperature and humidity, Central Europe for 2m temperature and
Australia for 2m humidity, the signal does not persist over longer lead times and a steady
degradation of 2m temperature and humidity appears over the Amazon from T+24h.

Figure 7 shows, however, a positive impact of the updated LAl on the general circulation over
the tropic region as shown by the reduction in RMSE of geopotential height in the troposphere
which persists across lead times.
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Figure 6: Impact of SIF data assimilation on 2 m temperature (left panel) and 1000 hPa
humidity (right panel) forecasts from the IFS at different lead times (12h to 168h forecast) for
the June-August 2022 period. The maps show the difference in RMSE between the
experiment conducted with the updated LAI and the control based on the LAI climatology. The
evaluation is done against the operational analysis.
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Figure 7: Impact of SIF data assimilation on geopotential height (Z) forecast from the IFS at
different lead times (12h to 216h forecast) for the June-August 2022 period. The plots show
the differences in RMSE between the experiment conducted with the updated LAI and the
control based on the LAI climatology as a function of latitude and pressure level. The
evaluation is done against the operational analysis by computing the RMSE of the forecast of
geopotential height from each experiment and the analysis.

5.1.3 Discussion

The assimilation of SIF mainly improves the LAI climatology over cropland for which the LAl
climatology is associated with larger uncertainties due to the large interannual variability
generated by agricultural practices. The SIF ML-based observation operator trained on
satellite LAl captures the strong statistical correlations between the SIF signal and LAI over
cropland. This highlights that the SIF satellite retrieval is mainly influenced by the seasonal
variability of the vegetation structure at this spatial and temporal resolution. The lower
performances obtained for rainforests are related to the larger uncertainties in satellite LAI
over dense vegetation and the inability of the ML observation operator to represent the SIF
variability due to vegetation physiology which is the main driver of the SIF signal for this
vegetation type. The improvement in LAl does not lead to systematic improvement in GPP
which can be due to limitations in the current representation of vegetation in ecLand and the
prevailing impact of other sources of biases in the coupled land-atmosphere model. Besides,
satellite-based GPP estimates, used here as reference for the evaluation, are not direct
measurements of GPP and are associated with various sources of uncertainties (Jung et al.,
2020). Multi-GPP datasets should be exploited in future works to account for the uncertainties
in the reference datasets. Finally, the lack of improvement of low-level meteorological fields
can be due to the strong tuning of surface-atmosphere interactions in the IFS which limits the
propagation of improved land surface variables into the atmospheric fields.
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5.2 Evaluation of the assimilation of ASCAT backscatter

In sections 5.2.1 t0 5.2.3 below, we present the results of experiments where only soil moisture
is analysed. In section 5.2.4, the LAl increments produced from the experiment conducted
with the analysis of both soil moisture and LAl are assessed.

5.2.1 Impact of assimilating ASCAT backscatter on soil moisture analysis

5.2.1.1 Comparison of soil moisture increments between ASCAT soil moisture
and ASCAT backscatter data assimilation

Figures 8 to 10 display global maps of seasonal mean of soil moisture increments obtained in
Summer 2022 from the assimilation of ASCAT using either backscatter (left) or soil moisture
retrieval (right). In the absence of observations, null increment values were filtered out when
the temporal average is computed.

For the sensitivity configuration, the increments of surface and root-zone soil moisture
generated by the assimilation of ASCAT backscatter versus soil moisture retrieval exhibit
different spatial distribution and order of magnitude (Figure 8 and 9). The assimilation of
backscatter produces larger variability of increments with some contrasted structures. The
difference in magnitude is particularly important for the root-zone soil moisture which reflects
the higher sensitivity of the ML observation operator to the soil moisture of the deep soil layers.
Figure 8 also highlights the larger spatial coverage of increments when assimilating
backscatter than soil moisture observations. This is particularly clear in tropical rainforest
regions where the soil moisture retrievals were filtered out during the quality control process.

For the operational configuration, the differences in the increment’s magnitude and spatial
distribution are smaller compared to the sensitivity configuration, because the increments are
strongly driven by the assimilation of 2 m temperature and humidity pseudo-observations. But
the assimilation of backscatter still produces larger soil moisture increments in the root-zone
than the assimilation of retrieved soil moisture.

Experiment with assimilation of ASCAT backscatter _ Experiment with assimilation of ASCAT soil moisture
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Figure 8: Seasonal average of surface soil moisture increments (m®* m=) in the sensitivity
configuration where only ASCAT observations are assimilated, using backscatter (left) and
retrieved soil moisture (right), for the summer 2022 period.
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Figure 9: Same as Figure 8 but for the root zone (top metre of soil).

Figure 10: Seasonal average of surface soil moisture increments (m® m) in the operational
Experiment with assimilation of ASCAT backscatter Experiment with assimilation of ASCAT soil moisture
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configuration using the full observing system including SMOS and low-level meteorological
field observations, and ASCAT backscatter (left) and soil moisture (right), for the summer 2022
period
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Figure 11: Same as Figure 10 for the root zone (top metre of soil).
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5.2.1.2 Evaluation against in situ soil moisture measurements

The verification performed against various soil moisture in situ networks displayed in Figure
12 shows that, compared to the assimilation of retrieved soil moisture, the assimilation of
backscatter leads to slight improvements in the simulated surface and root-zone soil moisture.
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Figure 12: Evaluation of surface and root-zone soil moisture IFS prediction (m® m=) against
in situ soil moisture measurements (m* m3) for various networks (names reported along the
x-axis). The performance score is quantified by the anomaly correlation computed in time for
each in situ network.

5.2.2 Impact of assimilating ASCAT backscatter on GPP

Figure 13 represents the global map of the GPP RMSE differences between the experiments
done with the assimilation of ASCAT backscatter versus the assimilation of ASCAT soil
moisture. The GPP RMSE of each experiment is computed using the FluxSat GPP dataset as
reference. Figure 13 shows that the assimilation of ASCAT backscatter in lieu of ASCAT soll
moisture leads to improvements in GPP forecast over Northern latitude particular in Europe
and locations in South America and Australia while more mixed results are obtained over
tropical rainforest and in North America.
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Figure 13: Impact of ASCAT backscatter on GPP forecast performances shown as GPP
RMSE differences between the assimilation of ASCAT backscatter versus the assimilation of
ASCAT soil moisture, using FluxSat as reference, for summer 2022 for the operational
configuration.

5.2.3 Impact of assimilating ASCAT backscatter on NWP forecasts
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Figure 14: Impact of ASCAT backscatter on forecast performance of temperature vertical
profile shown as RMSE normalized differences between the assimilation of ASCAT
backscatter vs ASCAT soil moisture using the operational analysis as reference, for summer
2022, for the operational configuration. The RMSE difference is normalized by dividing by the
RMSE related to the experiment done with ASCAT soil moisture. Cross hatching indicates
statistically significant differences. The plots show the vertical distribution of RMSE across
latitudes for distinct lead times.
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Figure 15: Impact of ASCAT backscatter on forecast performance of humidity vertical profile
shown as RMSE differences between the assimilation of ASCAT backscatter vs ASCAT soill
moisture using the operational analysis as reference, for summer 2022, for the operational
configuration. The RMSE difference is normalized by dividing by the RMSE related to the
experiment done with ASCAT soil moisture. Cross hatching indicates statistically significant
differences. The plots show the vertical distribution of RMSE across latitudes for distinct lead
times.

Figure 14 shows significant degradation in low-level temperature located in the tropics and
Northern latitude in the operational configuration when ASCAT backscatter is used instead of
soil moisture. Figure 15 indicates significant degradation of low-level humidity at Northern
latitudes. The maps of RMSE (not shown here) indicate degradations across Europe and
North America and some improvements in South America and Africa.

5.2.4 Impact on LAl increments
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Figure 16: Global seasonal mean of LAl increments (unit: m? m2) in summer 2022.
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Figure 16 illustrates results when LAl is included along with soil moisture in the data
assimilation control vector. It illustrates the capability of the ASCAT backscatter data
assimilation system to produce LAl increments and update the IFS LAI climatology. The
magnitude of the increments generated by the assimilation of backscatter is smaller than the
one produced by SIF data assimilation but the comparison is difficult given SIF was
assimilated in the offline LDAS while ASCAT is assimilated in the coupled LDAS where the
weak coupling between the surface analysis and the atmospheric analysis plays a role.

5.2.5 Discussion

The differences in soil moisture increments generated by the assimilation of ASCAT
backscatter versus soil moisture can be related to differences in information content between
the backscatter signal and the soil moisture retrieval. The backscatter normalized at 40° is
closer to the satellite measurement while the soil moisture retrieval is derived from a retrieval
algorithm that relies on specific assumptions and vegetation maps. Besides, the application of
a CDF matching to soil moisture retrieval and a ML observation operator used to simulate the
model equivalent of ASCAT backscatter can play a role. Finally, differences in the quality
control, particularly in the tropical regions, can generate differences in the number and location
of the assimilated observations.

The assimilation of backscatter improves the simulation of some land surface variables such
as soil moisture and GPP. The impact on GPP can result from improvements in soil moisture
which was proved to be a key driver of the land carbon uptake variability (Humphrey et al.,
2021). However, the degradation obtained for low-level meteorological fields shows that the
improvement of land surface variables does not systematically translate into improvement in
the atmosphere fields because of limitations in the vegetation representation in ecLand
(prescribed LAI) and the strong tuning of land-surface interactions which are very well-known
aspects of the IFS.

6 Conclusions

This work demonstrates the potential of ML observation operators to exploit land observations
and strengthen the coupled water and carbon cycle land data assimilation system in the IFS.
The assimilation of SIF provides a more realistic representation of the vegetation temporal
dynamics over croplands which is very relevant for the monitoring of emissions over
agriculture regions in the future CO2MVS. The assimilation of ASCAT backscatter represents
a great potential for the joint analysis of soil moisture and leaf area index in the coupled model.
The first results obtained by updating only soil moisture show positive impacts on soil moisture
and GPP but some degradations for the meteorological fields. Enhanced consistency between
surface improvements and atmospheric impact is expected with the prognostic LAl which is
under development in the IFS.

This study also highlights that the improvement in vegetation processes representation
provided by the assimilation of SIF or backscatter does not systematically translate into
improved forecast scores for 2m temperature and humidity variables. This reflects the strong
tuning of land-surface interactions which can limit the propagation of improved land surface
variables into the atmospheric fields. These results need to be refined, and possible
improvements need to be reassessed with the ongoing revision of the parametrization of land
surface-atmosphere interactions and the development of a new prognostic LAl in the IFS.

The main recommendations and steps forwards are:

= Retrain the ML observation operator approach with the most recent IFS cycle
to take advantage of the upcoming improvements of the vegetation process
modelling in the IFS.
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= Use the PYTORCH differentiation functionality to compute the ML observation
operator Jacobian instead of using the finite difference method which
substantially increases the computing cost in coupled simulations.

= Extend SIF and ASCAT backscatter data assimilation to the upcoming ecLand
prognostic LAl in both the offline and online LDAS.

= Assess the joint analysis of soil moisture and LAl in the IFS coupled model with
a focus on strong surface-atmosphere coupling conditions such as drought.

= Exploit SIF and ASCAT backscatter in purely data-driven forecast systems
which may be capable to extract more efficiently the information content from
those satellite observations compared to a traditional Earth System Model
which can be limited by the lack of accurate enough representation of land
surface processes.
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