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1 Executive summary 

This report summarises progress made under Tasks 3.3 and 3.4 of the CORSO project, in 
which global and regional estimates of fossil fuel carbon dioxide (ffCO2) flux were derived 
using atmospheric observations of 14C in CO2 and oxygen and atmospheric chemical transport 
models. It fulfils Deliverables D3.5 and D3.6, which are jointly described here to provide a 
consolidated overview of the current state of the science in this area. 

Since atmospheric CO2 mole fractions are influenced by fluxes from the terrestrial biosphere 
and the ocean in addition to fossil fuel emissions, it is well-established that the evaluation of 
fossil fuel emissions inventories at regional to global scales are likely to require atmospheric 
tracer measurements to supplement the inverse analyses of atmospheric mole fraction data. 
Previous studies have indicated that measurements of atmospheric radiocarbon (14C) in CO2 
(Δ14CO2) and concurrent atmospheric oxygen (O2) and CO2 observations may provide 
additional constraints on fossil fuel emissions, compared to atmospheric CO2 mole fraction 
measurements alone. As radiocarbon has a half-life on the order of thousands of years, fossil 
fuels are 14C-free, and therefore, fossil fuel emissions lead to a reduction in the 14CO2/12CO2 
ratio (~Δ14CO2) in the atmosphere. CO2 and O2 are coupled in all processes in the carbon 
cycle, except for ocean exchange, and by assuming a fixed exchange ratio between the 
atmosphere and terrestrial biosphere, CO2 and O2 can be combined  in “atmospheric potential 
oxygen (APO)”, which on large scales is dominated by fossil and oceanic fluxes. 

Tasks 3.3 and 3.4 of CORSO addressed key challenges relating to the inference of fossil fuel 
CO2 emissions at global (Task 3.3) and European (Task 3.4) scales. Inverse modelling 
systems were adapted to assimilate atmospheric Δ14CO2 and/or O2. At the global scale, 
atmospheric Δ14CO2 observations were incorporated into the Community Inversion Framework 
(CIF) with the LMDZ atmospheric transport model (LSCE), and atmospheric Δ14CO2 and O2 
measurements were incorporated into the Carbon Tracker Europe system (CTE, WU). At the 
European scale, the high-resolution (~10 km resolution) transport models, NAME (UK Met 
Office Numerical Atmospheric dispersion Modelling Environment) and LUMIA were used to 
simulate fossil fuel tracers. Regional inversions were performed respectively by UNIVBRIS 
using the Regional Hierarchical Inverse Modelling Environment (NAME-RHIME) using Δ14CO2 
and APO, and LUND for Δ14CO2 using LUMIA. Atmospheric observations were incorporated 
into these systems and the influence of potential confounding factors for the determination of 
ffCO2 were investigated. 

The primary achievement outlined in this report is the implementation of inverse analyses of 
atmospheric Δ14CO2 observations in all four models, and preliminary inverse analyses of O2 
(or APO) in one global and one regional model. The lessons learned in establishing these 
systems have informed the below recommendations for CO2MVS. 

For the inference of ffCO2 using Δ14CO2 at the European scale, all models used flask 
measurements from the Integrated Carbon Observing System (ICOS), including the 
“intensive” sampling period during 2024, when the frequency of flask analysis was increased 
by approximately a factor of 2 through CORSO Task 3.1 (D3.3). As the average footprint of 
the ICOS samples was highest over Germany, our analyses focused on Germany. The major 
findings of this part of the study were that: 

1. The enhanced sampling during 2024 led to ffCO2 emissions estimates for Europe and 
Germany that were less strongly influenced by prior estimates, compared to earlier 
years. 

2. A consistent seasonality in German ffCO2 emissions was derived from the ensemble 
of inversions, with emissions being substantially lower during the summer than in the 
winter. This seasonal cycle was found to be larger than in the prior emissions estimates 
used by some of the models (EDGAR and GridFED). 
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3. The magnitude of ffCO2 emissions estimates for Germany based on atmospheric 
Δ14CO2 observations was broadly consistent between models, but further work is 
needed to determine the influence on these estimates of the assumed background 
Δ14CO2, the nuclear industry and uncertainties in the isotopic signature of respiration 
fluxes. 

European emissions estimates of ffCO2 using CO2 and O2 data were more preliminary than 
those derived from Δ14CO2 and indicated that further work is needed to reconcile the model 
results. Model-measurement comparisons were performed using NAME-RHIME and CTE with 
ICOS flask samples measured for O2. Forward simulations using NAME-RHIME suggested a 
substantial under-estimation in German ffCO2, assuming negligible ocean influence on the 
data. However, a marked difference in model performance was found between in-land and 
coastal measurement sites, potentially indicating ocean APO exchange. In contrast, CTE did 
not find an overall large difference with inventory ffCO2 and that derived from O2 data. 
However, their analysis did suggest a much larger emissions seasonal cycle than the 
inventories’ and the ffCO2 derived from atmospheric Δ14CO2. In the CTE system, the 
combination of both O2 and Δ14CO2 provided the most robust results. Neither model was yet 
able to establish the added value of continuous atmospheric O2 measurements, beyond the 
forward model comparisons with NAME-RHIME published near the beginning of CORSO. 
Further work in that area will be undertaken in the partner project, PARIS, during 2026. 

At the global scale, CIF-LMDZ and CTE inversions showed that global ffCO2 is not well 
constrained by the existing background network for atmospheric Δ14CO2, given the 
uncertainties in heterotrophic respiration flux and its isotopic signature. However, the 
importance of global simulations and inversions was noted for constraining the Δ14CO2 
regional background. For the global study using O2 data (CTE), the assimilation of O2 was 
found to produce a useful additional constraint on land/ocean flux partitioning, compared to 
inversions using atmospheric CO2 mole fractions alone. 

Based on these findings, the recommendations for the future of Δ14CO2 and O2 data in 
CO2MVS are provided at the end of this report. These recommendations are summarised as 
follows: 

1. Based on the knowledge gained in developing simulations for Δ14CO2 and O2 in Tasks 
3.3 and 3.4, the implementation and evaluation of these tracers in the IFS should be 
continued in the near term, so that forward simulations can be compared to the 
atmospheric observations. 

2. Our findings suggest that atmospheric Δ14CO2 observations provide a constraint on 
ffCO2 for north-western Europe, at least for Germany, based on the ICOS Δ14CO2 
network and the enhanced sampling frequency during CORSO for 2024. This 
measurement frequency should be maintained, and sampling should be expanded to 
the rest of Europe so that ffCO2 can be derived for other countries. 

3. Maintenance and expansion of the global background Δ14CO2 network should be 
encouraged to provide background fields for regional inversions and, given sufficient 
measurement density, to better constrain global ffCO2. 

4. Reduced uncertainties are needed for respiration flux and its 14C isotopic signature. 
5. Further work is needed to establish the use of atmospheric O2 as a tracer for ffCO2, 

particularly using continuous atmospheric measurements. The influence on ffCO2 of 
ocean and biosphere CO2 and O2 exchange needs to be established. 
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2 Introduction 

2.1 Background 

To ensure the European Union (EU) moves towards a low-carbon economy and implements 
its commitments under the Paris Agreement, a binding target was set to cut greenhouse gas 
emissions in the EU by at least 40% below 1990 levels by 2030. European Commission (EC) 
President von der Leyen committed to deepen this target to at least a 55% reduction by 2030. 
This was further consolidated with the release of the Commission's European Green Deal on 
the 11th of December 2019. The European Green Deal set targets for the European 
environment, economy, and society to reach net zero emissions of greenhouse gases in 2050, 
outlining all needed technological and societal transformations that are aiming at combining 
prosperity and sustainability. To support EU countries in achieving their greenhouse gas 
emission targets, the EU and European Commission recognised the need for an objective way 
to monitor anthropogenic CO2 emissions and their evolution over time. 

 

Such a monitoring capacity will deliver consistent and reliable information to support informed 
policy- and decision-making processes, both at national and European level. To maintain 
independence in this domain, it is seen as critical that the EU establishes an observation-
based operational anthropogenic CO2 emissions Monitoring and Verification Support (MVS) 
(CO2MVS) capacity as part of its Copernicus Earth Observation programme. 

 

The CORSO research and innovation project has built on and complements the work of 
previous projects such as CHE (the CO2 Human Emissions), and CoCO2 (Copernicus CO2 
service) projects, both led by the European Centre for Medium-Range Weather Forecasts 
(ECMWF). These projects had already started the ramping-up of the CO2MVS prototype 
systems, so it can be implemented within the Copernicus Atmosphere Monitoring Service 
(CAMS) with the aim to be operational by 2026. The CORSO project has further supported 
establishing the new CO2MVS addressing specific research & development questions. 

 

The main objectives of CORSO were to deliver further research activities and outcomes with 
a focus on the use of supplementary atmospheric observations, i.e., of co-emitted species as 
well as the use of auxiliary observations to better separate fossil fuel emissions from the other 
sources of atmospheric CO2. CORSO aimed to deliver improved estimates of emission 
factors/ratios and their uncertainties of co-emitted species, as well as to use observations of 
co-emitted species at global and regional scales to better estimate anthropogenic CO2 
emissions. CORSO also aimed to provide clear recommendations to CAMS, the Integrated 
Carbon Observation System (ICOS), and the World Meteorological Organization (WMO) 
about the potential added-value of high-frequency atmospheric Δ14CO2 and oxygen (O2, 
including Atmospheric Potential Oxygen; APO) observations as tracers for fossil fuel 
emissions in both global and regional scale inversions. Furthermore, CORSO aimed to 
develop coupled land-atmosphere data assimilation in the global CO2MVS system 
constraining carbon cycle variables with satellite observations of soil moisture, leaf area index 
(LAI), solar induced fluorescence (SIF), and biomass. Finally, CORSO aimed to provide 
specific recommendations for the topics above for the operational implementation of the 
CO2MVS within the Copernicus programme. 
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2.2 Scope of this deliverable 

2.2.1 Objectives of this deliverable 

This deliverable reports on work in Work Package 3, specifically Tasks 3.3 and 3.4. In these 
tasks, the goals were to develop global and European scale multi-tracer or purely “fossil fuel 
CO2” inverse modelling systems. These systems were used to assess the relevance of 
assimilating atmospheric Δ14CO2 and O2 (or APO) observations with atmospheric CO2 data to 
disentangle the fossil fuel component from other CO2 signals and derive fossil fuel emission 
estimates for several decades at continental scale, and for recent years in Europe at regional 
scales. 
 
Ultimately, the analyses with the inversions in WP3 aimed to provide guidance on the potential 
use of these tracers for attribution and verification in the CO2MVS framework and prepare for 
their future implementation (with a transfer of the modelling capacities developed here), either 
in the main multi-scale inversion system or for benchmarking. Inversion Tasks 3.3 and 3.4 
strongly relied on inputs from the Tasks 3.1 and 3.2 in WP3 (see Deliverables D3.1, D3.2, 
D3.3 and D3.4), and in particular on the unprecedented set of high-frequency monitoring of 
atmospheric Δ14CO2 in Europe in 2024 and expansion of the continuous atmospheric O2 
measurement sites to include Cabauw thanks to CORSO (O2 flask sampling already started 
in 2022 by ICOS). 
 
This deliverable report documents these global and regional inversion systems, the challenges 
of their development, and specific sets of analyses that address: 
 

● The value of atmospheric Δ14CO2 and O2 (APO) for inferring fossil fuel CO2 emissions 
on global and national scales, and the added value gained from WP3 intensive 
sampling period compared to the more traditional sampling of these tracers. 

● The large-scale constraints on the fossil fuel emissions versus the natural atmosphere-
land and atmosphere-ocean carbon flux exchanges, brought by atmospheric Δ14CO2 
and O2 (APO) observations. 

● The potential to evaluate national budgets for selected countries, especially in north-

western Europe where there are well-established emissions inventory estimates. 

● The impact of uncertainties of emissions from nuclear power generation (14CO2), in 

terrestrial respiration fluxes (14CO2), in the atmospheric observations, in exchange 

ratios (O2 /APO), and in the ocean fluxes (O2 /APO). 

● The need for the extension of the current atmospheric observation networks and the 

intensification of atmospheric CO2-tracer observations. 

 
 

2.2.2 Work performed in this deliverable 

A major part of the efforts in Tasks 3.3 and 3.4 was dedicated to the development and tests 
of the multi-tracer and fossil fuel inverse modelling configurations. Most of these configurations 
were based on pre-existing atmospheric transport inverse modelling frameworks but in some 
cases, the specific inversion system with the coupling between these frameworks and specific 
(e.g., higher resolution) configurations of the transport models were further developed during 
this project. Furthermore, the modelling groups invested time to: 

● Implement and test the additional tracers. 
● Expand the inversions to very recent years (including 2024). 
● Set up new control vectors for some of the multi-tracer approaches. 
● Implement and use new input products from WP3 and other projects. 
● Implement the corresponding statistics of the uncertainties in the prior estimate of the 

fluxes and isotopic signatures, disequilibrium or O2 outgassing fluxes. 
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Reference inversions have been conducted over more than two decades over the globe and 
for more than five years at the European scale. Finally, major efforts have been dedicated to 
conduct sensitivity tests and analysis to fulfil the main objectives of the tasks. 

 

2.2.3 Deviations and counter measures 

The development and set up of suitable inverse modelling frameworks and the launch of 
reference inversions, after having overcome major challenges in the initial tests, took more 
time than expected in the Tasks 3.3 and 3.4. This highlights the challenges of developing 
multi-tracer approaches with a full joint modelling and assimilation of the atmospheric CO2, 
Δ14CO2 and O2 tracers. The amount of tests and analyses to answer the main questions posed 
in WP3 was less extensive than initially planned, and two specific targeted studies were not 
conducted. The first one corresponded to the site-level attribution, which also depended on 
observations that were not fully available (see e.g. D3.3 on measurement issues at Heathfield 
station, UK). The second corresponded to the simulations of the tracers for future decades 
based on the emissions scenarios developed in Task 3.2. Initial simulations with future 
emission scenarios have been conducted for Δ14CO2, but they should be refined. Furthermore, 
the current inversion experiments described in this deliverable showed that even in the present 
situation we have to learn more about the types of signals which provide the main constraints 
for the derivation of fossil fuel emissions. For fully assessing future emission scenarios, we 
should further refine the present inversions, so we can see the impact the decline in emissions 
would have on the potential for future emissions evaluation. Finally, the implementation into 
IFS was started at ECMWF, but did not yet result in simulations for these tracers. 

However, specific experiments were targeted with specific inversion systems to ensure that 
this deliverable brings insights for the main objectives assigned to Tasks 3.3 and 3.4, and the 
set of experiments detailed in this document provides some clear views on the current 
challenges and potential of the multi-tracer inversion approach. 

This Deliverable represents the work performed for both Deliverable 3.5 and 3.6. Given the 
strong connections between the regional and global scale inversion systems, and to 
strengthen the recommendations and conclusions, we have combined the results from the 
global and regional systems into a single Deliverable instead of two separate ones.  

2.3 Project partners: 

Partners  

COMMISSARIAT A L’ENERGIE ATOMIQUE ET AUX ENERGIES 
ALTERNATIVES 

CEA 

WAGENINGEN UNIVERSITY WU 

UNIVERSITY OF LUND ULUND 

UNIVERSITY OF BRISTOL UNIVBRIS 

EUROPEAN CENTER FOR MEDIUM-RANGE WEATHER 
FORECASTS 

ECMWF 
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3 Methods 

This section explains the general concepts used in the tracer inversions of atmospheric 

Δ14CO2 and O2 (APO) and describes the methods applied to each of the inverse modelling 

systems.  

 

3.1 Multi-tracer and fossil fuel inversions 

Accurately separating natural and anthropogenic contributions to atmospheric CO2 is essential 
for robust top-down emission estimates. In regions where land biospheric fluxes, ocean–
atmosphere exchange, and fossil fuel emissions all influence observed mole fractions, using 
atmospheric CO2 mole fraction observations alone may not be sufficient because different 
processes can produce similar atmospheric signals.  

Multi-tracer inversions could address this problem by jointly assimilating atmospheric CO2 and 
atmospheric tracers of CO2 with a prominent signal from fossil fuel emissions e.g. radiocarbon 
(14C) in CO2 (reported as Δ14CO2) or atmospheric oxygen O2 (or Atmospheric Potential 
Oxygen; APO), allowing the optimisation of both natural fluxes (land biospheric and ocean 
exchange with the atmosphere) and fossil fuel emissions within a single framework. 
Intermediate approaches rely on the derivation of fossil fuel CO2 signals from joint atmospheric 
observations of CO2 and these tracers, and on their assimilation in “fossil fuel inversion 
frameworks” i.e. inversions that only simulate fossil fuel CO2 data, and which only control fossil 
fuel emissions. 

 

3.1.1 Δ14CO2 modelling 

Over small spatial and temporal scales, atmospheric radiocarbon in CO2 provides an almost 
direct constraint on fossil fuel CO2. Using both atmospheric Δ14CO2 and CO2 should improve 
the attribution of observed variability to specific natural and anthropogenic sources and sinks, 
and should lead to more consistent and empirically informed flux estimates. This combined 
approach should provide a strong basis for evaluating global and regional carbon budgets and 
for separating anthropogenic emissions from ecosystem processes. To formalise these 
components and their interactions, we introduce the mass-balance equations governing 
atmospheric CO2 and Δ14CO2. For extensive details, please refer to the given references. 

 

Let the evolution of the atmospheric CO2 burden, 𝐶, be expressed as 

𝑑

𝑑𝑡
𝐶 =  𝐹𝑏𝑖𝑜 + 𝐹𝑜𝑐𝑒 + 𝐹𝑓𝑓. 

In this equation, 𝐹𝑏𝑖𝑜 is the net exchange with terrestrial ecosystems (including photosynthesis, 
respiration, and fires), 𝐹𝑜𝑐𝑒 is the air–sea CO2 exchange, and 𝐹𝑓𝑓 represents fossil fuel and 

cement emissions. 

The corresponding budget for atmospheric Δ14CO2 is 

𝑑

𝑑𝑡
(𝐶𝛥𝑎𝑡𝑚)  =  𝛥𝑎𝑡𝑚(𝐹𝑏𝑖𝑜 + 𝐹𝑜𝑐𝑒) + (𝛥𝑏𝑖𝑜 − 𝛥𝑎𝑡𝑚)𝐹𝑏𝑖𝑜→𝑎𝑡𝑚 + (𝛥𝑜𝑐𝑒 − 𝛥𝑎𝑡𝑚)𝐹𝑜𝑐𝑒→𝑎𝑡𝑚 

+𝛥𝑓𝑓𝐹𝑓𝑓 + 𝐹𝑛𝑢𝑐 + 𝐹𝑐𝑜𝑠𝑚𝑜. 

Here, Δ denotes the radiocarbon signature of a carbon reservoir or flux, corrected for 
fractionation and radioactive decay following Stuiver & Polach (1977). Multiplying Δ by CO2 
(mole fractions or fluxes) yields conservative, additive quantities (Tans et al., 1993). The terms 
𝛥𝑎𝑡𝑚𝐹𝑏𝑖𝑜 and 𝛥𝑎𝑡𝑚𝐹𝑜𝑐𝑒 represent exchanges of “modern” 14C between the atmosphere and the 
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biosphere or the ocean’s surface layer, which generally share similar radiocarbon levels 
(Graven et al., 2020). 

The disequilibrium fluxes (𝐹𝑏𝑖𝑜→𝑎𝑡𝑚 and 𝐹𝑜𝑐𝑒→𝑎𝑡𝑚) describe deviations in Δ14CO2 between the 
atmosphere and the biosphere or ocean. Terrestrial disequilibrium arises from the release of 
14C-enriched carbon from older organic matter, while oceanic disequilibrium is mainly driven 
by 14C-depleted carbon transported upward from deeper waters (Lehman et al., 2013; Basu 
et al., 2016). Fossil fuels, which contain no 14C, are represented by 𝛥𝑓𝑓 = −1000‰. Additional 

terms account for radiocarbon emitted by nuclear facilities (𝐹𝑛𝑢𝑐) and natural 14C production in 

the stratosphere (𝐹𝑐𝑜𝑠𝑚𝑜). 

 

The structure of these equations varies slightly across the literature and leads to different 
implementations in the multi-tracer models; some formulations explicitly separate 
photosynthesis and respiration and assign isotopic signatures to each (Naegler & Levin, 2009; 
Turnbull et al., 2009; Potier et al., 2022). The version used above to illustrate the principle of 
the 14C modelling follows Miller et al. (2012) and Basu et al. (2016). The multi-tracer systems 
used in this deliverable follow both types of formulation.  

 

Another established method for separating fossil fuel CO2 from natural fluxes is the regional 
isotope budget approach. This technique uses Δ14CO2 to quantify the fossil fuel CO2 
enhancement at a monitoring site relative to a background location assumed to represent air 
masses unaffected by nearby emissions (Levin et al., 2003). The fossil fuel CO2 component 
(𝐶𝑓𝑓) is derived from the difference between the observed (Δobs) and background Δ14CO2 

values (Δbg), combined through a simple mass-balance relationship that also accounts for 
biospheric exchange: 

𝐶𝑓𝑓  =  𝐶𝑜𝑏𝑠(
𝛥𝑏𝑔−𝛥𝑜𝑏𝑠

𝛥𝑏𝑔+1000‰
) + 𝛽. 

Corrections for local influences, mainly radiocarbon emissions from nuclear facilities, are 
included in the 𝛽 term, typically estimated through source-receptor atmospheric transport 
modeling (Maier et al., 2023).  

The correction term, 𝛽, is defined as 

𝛽 = (
𝛥𝑏𝑔−𝛥𝑟𝑒𝑠𝑝

𝛥𝑏𝑔+1000‰
)𝐶𝑟𝑒𝑠𝑝 + (

𝛥𝑏𝑔−𝛥𝑔𝑝𝑝

𝛥𝑏𝑔+1000‰
)𝐶𝑔𝑝𝑝 + (

𝐴𝑛𝑢𝑐

𝛥𝑏𝑔+1000‰
). 

Here, the first two terms represent the terrestrial biosphere correction - split between gross 
primary productivity (GPP) and respiration - and the last term is a correction for nuclear power 
plant Δ14CO2. Since the global background Δ14CO2 value (∆bg) is close to 𝛥𝑔𝑝𝑝 (i.e. a small 

isotopic disequilibrium) at present, the terrestrial biosphere contribution is likely to be small in 
comparison to the nuclear power plant and fossil fuel contributions. 

 

This approach is most effective in regions where fossil fuel emissions strongly deplete Δ14CO2 
and provides a practical way to estimate fossil fuel CO2 enhancements without fully resolving 
all natural flux components. This method is used to pre-compute fossil fuel CO2 mole fractions 
(Cff), which are subsequently assimilated within a “fossil fuel” inverse modelling system, 
abbreviated as ffCO2-only from now on, to support the optimisation of regional fossil fuel 
emissions. These pre-computed Cff mole fractions are considered to be pseudo-observations, 
meaning that they are not measured directly in the atmosphere but are instead derived from 
atmospheric Δ14CO2 observations under a set of assumptions about background conditions 
and correction terms. In this sense, they function as observational constraints within the 
inversion, but retain the uncertainties and potential biases associated with the underlying 
Δ14CO2-based regional isotope budget (Maier et al., 2023). 
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Alternatively, this approach can be formulated to not apply the 𝛽 correction to the observation 
term and instead optimise for each of the terms of 𝛽 and for Cff from the atmospheric 
observation term. In other words, the observations are kept on the left-hand side of the 
equation, and all the sectoral estimates on the right-hand side. This approach allows for the 𝛽 
correction to be adjusted, which should be relatively small, rather than kept fixed. 

 

3.1.2 O2 and APO modelling 

Atmospheric CO2 and δ(O2/N2) measurements can be combined into Atmospheric Potential 
Oxygen (APO; Stephens et al., 1998). This is defined in the below equation, where the value 
1.1 denotes the CO2:O2 land biosphere molar exchange ratio; 350 is an arbitrary reference 
value; and XO2 is the standard O2 reference value (equal to 0.20946; Machta and Hughes, 
1970) used to convert the second term from ppm to per meg 

𝛿(𝐴𝑃𝑂)  =  𝛿(𝑂2/𝑁2)  +
1.1

𝑋𝑂2
(𝐶𝑂2 − 350) . 

Assuming that the terrestrial land biosphere molar exchange ratio is close to 1.1, atmospheric 
variations in APO are dominated by fossil fuel fluxes and exchange with the ocean (e.g., 
Pickers et al., 2022; Chawner et al., 2024). Therefore, it has been proposed that APO 
variations can be used to infer fossil fuel CO2 emissions, if ocean influences are small. 

Recent work by Faassen et al. (in prep.) shows that in certain cases, the biosphere exchange 
ratio can vary from the fixed value of 1.1. This can influence fossil fuel estimates using APO, 
especially in regions where there are large biosphere signals (particularly in summer), or 
regions where the variability in the exchange ratio is large. In the inversions using 
CarbonTracker Europe (CTE, see Section 3.2.3 ), we therefore simulate the full O2 signal, 
instead of APO. 

 

3.2 Global systems 

3.2.1 Community Inversion Framework - LMDZ (CIF-LMDZ) 

 
The variational model of the Community Inversion Framework (CIF) coupled with the LMDz 
atmospheric general circulation model has been used to perform global inversions co-
assimilating CO2 and Δ14CO2 data with transport modelling at different spatial resolutions and 
over different timescales to answer the questions on both the large and national scale 
constraints from radiocarbon on CO2 inversions. The inversion configuration used here 
assimilates daily mean CO2 and integrated and flask sample Δ14CO2 observations, comparing 
them to mole fractions simulated using CIF-LMDZ that is fed by estimates of the CO2 surface 
fluxes together with isotopic signatures for these fluxes following the formulation of joint 
CO2/radiocarbon assimilation problem of Wang, (2016) and Potier et al (2022). 
 
The CIF is a flexible, open-source framework developed in Python for enabling consistency 
across multiple systems of atmospheric inversions of greenhouse gases (Berchet et al, 2021). 
The CIF has been adapted to assimilate observations of atmospheric tracers together with 
their isotopes, independently optimize fluxes and isotopic signatures for multiple emissions 
categories, and optimize the initial atmospheric conditions (Thanwerdas et al, 2022). An offline 
version of LMDZ and its adjoint code has been interfaced with the CIF to provide seamless 
integration between the variational inversion algorithm and the atmospheric transport. 
 
Atmospheric transport of CO2 and 14CO2 is simulated using the LMDz global circulation model. 
LMDz is the atmospheric component of the Earth system model of the Institut Pierre-Simon-
Laplace (Durfresne et al, 2013), developed at the Laboratoire de Meteorologie Dynamique 
(LMD; Hourdin et al, 2006), that has been converted into an offline version for use in 
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atmospheric inversions (Chevallier et al, 2005). Precalculated meteorological inputs are fed to 
the model to reduce computation time, with the model simulating large-scale advection and 
sub-grid transport processes. LMDz uses the deep convective scheme of Tiedtke, 1989, and 
the vertical diffusion scheme of Louis, 1979. It is nudged every 6 hours towards a reanalysis 
of wind fields from the European Centre for Medium-Range Forecasts (ECMWF) ERA-5 
products. 
 

The results from two configurations of the CIF-LMDz multi-tracer system corresponding to 
different resolutions of LMDz are presented here. The first configuration simulates 
atmospheric distributions of these tracers over a period of 27 years from 1998 to 2024, 
inclusive, with LMDz at a standard resolution. The second configuration performs the 
simulation over a 4-year period, from 2021 to 2024 inclusive, with LMDz at a higher horizontal 
resolution. The first two years of the simulation considered a spin up period in both cases. The 
standard resolution configuration uses 144 grid points in both latitude and longitude, 
corresponding to a resolution of 1.3° latitude x 2.5° longitude; the high-resolution configuration 
uses 256 grid points (in both latitude and longitude), corresponding to 0.7° latitude x 1.4° 
longitude. Both LMDz configurations have a vertical discretization of 79 hybrid sigma-pressure 
layers extending from the surface to the top of the atmosphere (approximately 80 km altitude). 
 
An initial coarse LMDz configuration was used for the first tests and analysis in task 3.3 (as 
documented in the report for milestone 7 of CORSO WP3). This configuration has a 96 grid 
point horizontal grid that corresponds to a horizontal resolution of 1.875° latitude x 3.75° 
longitude, with a vertical distribution of 39 hybrid sigma-pressure layers. The results from this 
configuration are not retained in this deliverable because the higher 1.3° x 2.5° resolution 
configuration proved to be attainable within the timeframe of the project. The higher resolution 
also provides more relevant results over the targeted past decades for the large-scale 
analysis. Transport is calculated at a 30-minute or 20-minute timestep for the 144 and 256 
grid point configurations, respectively. 
 
CO2 and 14CO2 are transported as two independent tracers in the model. All observations of 
Δ14CO2 are converted to δ14CO2 using background δ13CO2; radiocarbon observations and 
isotopic signatures are converted between δ14CO2 and 14CO2 (mole fraction) using the modern 
standard 14C/12C ratio (Rstd = 1.176 x 10-12). For the standard resolution configuration, the initial 
CO2 mole fractions are taken from outputs of the CAMS CO2 global inversions based on the 
PyVAR-LMDz inversion system (Chevallier et al., 2023). The initial δ14CO2 atmospheric 
distribution is taken from model outputs produced by Wang, 2016 and scaled to match the 
background average δ14CO2 calculated from Graven et al, 2020. 
 
Atmospheric observations of CO2 and Δ14CO2 are collected from the global greenhouse gas 
monitoring networks NOAA (United States), SIO (United States), ICOS (Europe), and NIWA 
(New Zealand). The CO2 observations were taken from the NOAA Observation Package 
(ObsPack) data product (Schuldt et al., 2022 and 2023, and Bergamaschi et al., 2023). The 
data have been filtered to include observations from either the afternoon-only (12:00 to 17:00 
local time) for stations at <1000 m altitude or night-only (0:00 to 5:00 local time) for stations 
situation above 1000 m altitude due to meteorological dynamics that can be difficult to simulate 
in the model. The Δ14CO2 observations are provided by the CORSO project and further details 
on these measurements can be found in the deliverables D3.1 and D3.3. 
 
The fluxes used to simulate CO2 are categorized into fossil fuel, biomass burning, oceans, and 
the biosphere in the CIF-LMDz inversion framework; for the purpose of the multi-tracer 
approach (as implemented in the CIF-LMDz inversion framework following Wang, 2016 and 
Potier et al, 2022) the natural fluxes (oceans and biosphere) are further split into their gross 
one-way components of ocean-to-atmosphere (OA), atmosphere-to-ocean (AO), net primary 
productivity (NPP), and heterotrophic respiration (HR) fluxes due to the two components of 
the ocean and biosphere fluxes having different isotopic signatures. The prior estimates of 
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these fluxes are collected from a variety of flux products, with the prior fluxes chosen to align 
with the configuration of the CAMS CO2 global inversions (Chevallier et al, 2023). Despite this 
attempt at alignment with the CAMS configuration, the practical implementation of the control 
vector used for the multi-tracer approach does produce significant differences with the CAMS 
configuration. For the higher resolution configuration, the initial CO2 distribution is taken from 
the results of the standard resolution configuration. These flux products are regridded from 
their original resolution to the resolution on which LMDZ is run. Further information on the flux 
products is given below and summarized in Table 1. 
 
The prior CO2 ocean fluxes are generated using products from the Copernicus Marine 
Environmental Monitoring Service (CMEMS; Chau et al, 2024a, 2024b, and 2022) with the AO 
component calculated from the solubility of CO2 in seawater, fraction of sea ice cover, and the 
CO2 partial pressure in sea surface water and the atmosphere; the OA component is 
calculated from the difference between the net ocean flux and AO. The CO2 biosphere fluxes 
are calculated using the ORganizing Carbon and Hydrology in Dynamic EcosystEms 
(ORCHIDEE) version 2.2 model (Krinner et al, 2005). The NPP is taken directly from the model 
output while HR is calculated as the difference between NEE and NPP. The ORCHIDEE 
products used here are a climatology (long-term average), using the mean of the years 1981 
to 2020, to match the CAMS inversion configuration. The climatology was chosen to enable 
CAMS inversion to be run up to the present day without the delay due to the time needed to 
deliver the most up-to-date data products. The CO2 fossil fuel emissions are taken from the 
Gridded Fossil Emissions Dataset (GridFED) produced by the Global Carbon Project 
(Janssens-Maenhout et al, 2019, Friedlingstein et al, 2023, Jones et al, 2021). The CO2 
biomass burning fluxes are from the Global Fire Emissions Database version 4 (GFED4; van 
der Werf et al, 2017). 
 
Of the CO2 fluxes, oceanic, biosphere, and fossil fuel fluxes are controlled by the inversion 
while biomass burning is not. The inversions control the fluxes at 1.3° x 2.5° and 10-day 
resolution even when simulating the transport at 0.7° latitude x 1.4° longitude resolution. The 
configuration of the prior error covariance matrix characterizing the statistics of the uncertainty 
in the prior estimates of the CO2 fluxes is described in Table 1. As explained above, these 
values have been selected to get approximately the same budget of uncertainty in NEE and 
net ocean fluxes at 1.3° x 2.5°/10-day scale with the same scales of spatial and temporal 
correlation as in the CAMS CO2 global inversions. This set-up reflects the larger uncertainties 
in the terrestrial ecosystem fluxes compared to the other fluxes, which arises from the use of 
the long-term average for the prior estimate of the terrestrial fluxes and also the relatively good 
knowledge on the fossil fuel emissions whose order of magnitude should be fairly well known 
in the countries emitting the most fossil fuel CO2. 
 
Simulated atmospheric radiocarbon varies across the globe and in time because of the 
isotopic disequilibrium of the ocean and biosphere isotope signatures applied to the CO2 
fluxes, the cosmogenic and nuclear production of 14CO2, and the dilution of 14CO2 relative to 
12CO2 due to the lack of radiocarbon in fossil fuel emissions of CO2. As explained above, the 
differences in the isotopic signatures for each of the one-way gross fluxes of the isotopic ocean 
and biosphere disequilibrium led to a separate control of the ocean-to-atmosphere (OA), 
atmosphere-to-ocean (AO), NPP, and HR components. Details of the prior estimate used for 
each of these isotopic signatures and for the 14CO2 fluxes of other origins are given below. 
Several of these estimates are derived from the D3.4 radiocarbon flux database compiled in 
the frame of task 3.2. Similar to what is done for CO2, the radiocarbon signatures and fluxes 
are regridded from their original resolution to the resolution of LMDZ. Further information on 
the flux products is given below and summarized in Table 1.  
 
The ocean-to-atmosphere isotopic signature, the HR and NPP components of the biosphere 
disequilibrium, as well as the nuclear 14C flux are taken from the D3.4 radiocarbon flux 
database compiled in the frame of task 3.2 and briefly summarized here. The isotopic 
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signatures for the ocean are derived from 14C data from surface sea water measurements 
gathered by the Global Ocean Data Analysis Project (GLODAP) for the year 1995 and 
extended using ocean transect measurements collected by the Climate and Ocean: Variability, 
Predictability, and Change (CLIVAR) using the method described by Lindsay (2016). The NPP 
and HR components of the biosphere are taken from products generated by the global 
vegetation model Lund-Potsdam-Jena (LPJ; Sitch et al, 2003, Scholze et al, 2003). The global 
14CO2 nuclear flux is estimated using the annual electricity generation by nuclear power plants 
given by the International Atomic Energy Agency’s Power Reactor Information System (IAEA 
PRIS) while the data for nuclear reprocessing sites are gathered from the ICOS Carbon Portal 
(Storm et al, 2004) and a report by the Japan Atomic Energy Agency (Nakada et al., 2008). 
These data are converted to a flux using the method and emissions factors from Graven and 
Gruber, 2011 and Zazzeri et al., 2018.  
 
The atmosphere-to-ocean isotopic signature, fossil fuel isotopic signature, and cosmogenic 
production of 14CO2 were derived independently. In brief, the atmosphere-to-ocean isotopic 
flux is taken from the lowest atmospheric layer of the initial Δ14CO2 concentrations (see above) 
with a fractionation coefficient of -4 per mil applied. Fossil fuel emissions are assumed to have 
an isotopic signature of -1000% everywhere. The cosmogenic 14C production is assumed to 
be a constant global production of 2.2 x 1026 14C atoms year-1 with a latitudinal distribution that 
varies from a maximum at the poles to a minimum at the equator (Kanu et al, 2016 and Masarik 
and Beer, 2009). 
 
Within the inversion framework, only the biogenic and oceanic isotopic signatures are 
controlled, both at 1.3° x 2.5° and 10-day resolution (same as for the CO2 fluxes). The prior 
uncertainty in both the NPP and AO isotopic signatures is lower than those of the HR and OA 
isotopic signatures, as described in Table 1. In all cases, these prior uncertainties are assigned 
horizontal correlations of 500 km and temporal correlations of 5-year scales.  The fossil fuel 
emission signature as well as the nuclear and cosmogenic emissions are not controlled by the 
inversion. 
 

Table 1: Summary of fluxes and isotopic signatures as well as the corresponding prior 
uncertainties used in the inversion, with a control resolution of 1.3° latitude x 2.5° longitude 
and 10 days 

 CO2 Δ14CO2 

 Flux source Prior uncertainties and 
correlations 

Isotopic signature 
source 

Prior uncertainties 
and correlations 

AO CMEMS 
calculation 

14% at control res.  
1000 km spatial corr 
1 month temporal corr 

Surface Δ14CO2 20% at control res.  
500 km spatial corr 
5-year temporal corr 

OA CMEMS 
calculation 

14% at control res.  
1000 km spatial corr 
1 month temporal corr 

GLODAP + 
CLIVAR 
calculation 

50% at control res.  
500 km spatial corr 
5-year temporal corr 

HR ORCHIDEE 
climatology 

92% at control res. 
500 km spatial corr 
1 month temporal corr 

LPJ 50% at control res. 
500 km spatial corr 
5-year temporal corr 

NPP ORCHIDEE 
climatology 

92% at control res. 
500 km spatial corr 
1 month temporal corr 

LPJ 20% at control res. 
500 km spatial corr 
5-year temporal corr 
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Fire GFED Not controlled - - 

FF GridFED 50% at control res.  
No temporal or spatial 
correlation 

Constant (-
1000‰) 

Not controlled 

Nuc - - PRIS+RADD 
CORSO product 

Not controlled 

Cosm - - Constant (latitude 
gradient) 

Not controlled 

 

 

3.2.2 CarbonTracker Europe (CTE) - WU 

The CarbonTracker Europe (CTE) multi-tracer setup is developed as a new version of CTE, 
called the CTE Long Window-Short Window (CTE-LW-SW) system (Hooghiem et al, in prep., 
van der Laan-Luijkx et al. 2017, Peters et al. 2007). Within CORSO, the CTE-LW-SW system 
was further developed for multi-tracer capacity for Δ14CO2, δO2/N2 and δ13CO2. The system 
uses the TM5 global transport model and is built within CarbonTracker Europe’s Data 
Assimilation Shell (CTDAS). 
  
The Transport Model 5 or TM5, simulating atmospheric trace gas chemistry and transport, is 
documented by Krol et al. (2005). TM5 is an offline tracer transport model used where the 
advection is computed using the slopes advection scheme (Russel and Lerner, 1981). This 
scheme is currently driven by ERA-5 reanalysis wind fields (Hersbach et al., 2020). The 
convection is computed from the convective entrainment and detrainment rates from the ERA-
5 reanalysis. Free tropospheric diffusion is computed using the formulation by Louis (1979) 
and in the boundary layer using Holtslag and Boville (1993), where the diurnal variability in the 
boundary layer height is computed using Vogelezang and Holtslag (1996). 
 
The CarbonTracker Europe Data Assimilation Shell (CTDAS) is the European branch of 
CarbonTracker (van der Laan-Luijkx et al., 2017, Peters et al. 2007). It is a data assimilation 
system dedicated to estimate (carbon) surface fluxes, via data assimilation of observations of 
atmospheric composition. The core analysis is done using the Ensemble Kalman Filter 
technique, where an ensemble represents the covariance in the fluxes, to obtain an optimal 
regression that minimizes the Bayesian Cost function. The ensemble can only represent 
limited degrees of freedom, which can lead to so-called spurious correlations, and the 
uncertainty reduction is overestimated.  
 
In this work, we used CTE-LW-SW to perform global simulations over the period 2000-2025. 
The LW part of this system is specifically designed to deal with atmospheric records of 
greenhouse gas and related tracer observations that have sparse spatial and temporal 
coverage, such as those of δ13CO2, Δ14CO2 and δO2/N2. In the data assimilation system, the 
natural fluxes are fully coupled to CO2 through isotopic (δ13CO2, Δ14CO2) or exchange ratios 
(δO2/N2). In addition, to solve for the natural (biosphere and ocean) fluxes, we optimize the 
disequilibrium fluxes as well as the oxygen outgassing over the ocean. Table 2 below shows 
the setup of the LW system, including correlations and uncertainties. 
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Table 2: settings of the CTE-LW system. For the last two columns: the dash means that these 
fluxes are not optimised 
 

State Prior flux O2 ratio 14C-signature Spatial Temporal 

Biosphere SiB4 SiB4 LPJ For each 
Olsen region 
in a 
Transcom 
region 

Daily; 15 
days; 4 
year 

Ocean Carboscope - Constant  
-4 per mil 

30 ocean 
basins; 3000 
km 

Daily; 60 
days; 5 
years  

Fossil fuel flux GridFED GridFED -1000 per mil - - 

Fire flux GFAS SiB4 LPJ  - - 

14C terrestrial 
biosphere 
disequilibrium 

SiB4 - LPJ Transcom 
regions 

Daily; 90 
day 
correlation; 
5 years 

14C ocean 
disequilibrium 

LMDZ-
CORSO 

-  Transcom 
regions; 
correlation of 
3000 km 

Daily; 90 
day 
correlation; 
5 years 

Nuclear CORSO   - - 

Cosmogenic Basu et al. 
2020 

  - - 

Ocean oxygen 
flux 

Scaled 
CESM 

  Transcom 
regions; 
correlation of 
3000 km 

Daily; 90 
day 
correlation; 
5 years 

 
 
In the second short window (SW) step (see Table 3), an attempt was made to estimate fossil 
fuels over Europe and investigate the impact of various aspects on inversions. In this step, the 
focus is over Europe in 2024, the year of the intensive CORSO sampling. Also, fewer 
background observations were available over 2024, which gives less constraint over the rest 
of the globe. We perform several experiments for 2024 over Europe to show the constraints 
brought from the new observations in Europe. In these experiments, in contrast to the global 
setup, we now keep the disequilibrium fluxes as well as the oxygen outgassing over the ocean 
fixed. We use a gridded state vector over Europe, instead of larger (Transcom) regions in the 
global inversion. And we now also solve for fossil fuel emissions. For this, we reduce the prior 
fossil fuel emissions, from the known GridFED emissions in 2024 (which we regard as the 
“truth”), to the GridFED emissions from the year 2020, reduced by 20%, to see how well the 
network can inform on the fossil fuel emissions. Subsequently, we do different experiments 
using only one simulation of transport but selecting different observations. This allows us to 
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redo the data assimilation step only, and see the impact of each tracer separately. The 
experiments performed are as follows:  

● Only using CO2 observations. This includes observations from the Globalview Plus 
ObsPack, including many of the insitu stations from ICOS. To reduce the weight of the 
amount of CO2 data in the assimilation we have randomly selected only 10 percent of 
the available data. 

● Only the 𝝙14CO2 observations. 
● Only the δO2/N2 observations. 
● All tracers combined.  

 
Two important notes: during the test phase, we found that a potentially large impact exists for 
samples with a very low O2 value. These can be seen e.g. in the observations of Cabauw, and 
the low O2 values likely indicate a very local fossil fuel signal (or measurement error). These 
very low O2 values could not be simulated with our TM5 model at the relatively coarse 
resolution. Therefore, in the δO2/N2 only experiment, we introduced a filter for values deviating 
from the mean of the observations. For the other experiments we did not apply the filter. 
Secondly, the power of our multi-tracer data-assimilation lies in the coupling of all tracers, and 
in that sense these experiments that we performed so far do not provide the full picture. 
Instead, with our experiments presented here, we aim to quantify where the constraints can 
be found, and in these experiments, the tracers that were not assimilated serve as a validation. 
These individual tracer experiments thereby show how the combination of all tracers is 
influenced by either tracer, or potentially dominated by only one of them. 
 
 
Table 3: settings of the CTE-SW system 
 

State Prior flux O2 ratio 14C-
signature 

Spatial Temporal 

Biosphere SiB4 SiB4 LPJ Gridded 
over Europe; 
300 km; For 
each olsen 
region in a 
transcom 
region 

Daily; 15 
days;  

Ocean Carboscope - Constant -4 
per mil 

30 ocean 
basins; 3000 
km 

Daily; 60 
days; 4 
years 

Fossil fuel flux GridFED GridFED -1000 Gridded 
over Europe; 
600 km; For 
each olsen 
region in a 
transcom 
region- 

-daily; 60 
days 

Fire flux GFAS SiB4 LPJ  - - 

14C terrestrial 
biosphere 
disequilibrium 

Optimized 
LW 

-    
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14C ocean 
disequilibrium 

Optimized 
LW 

    

Nuclear CORSO     

Cosmogenic Basu et al. 
2020 

    

Ocean oxygen 
flux 

Optimized 
LW 

    

 
 

3.2.3 Integrated Forecasting System (IFS) - ECMWF 

As part of the CORSO project, progress has been made towards implementation of forward 
modelling capacity for atmospheric potential oxygen (APO) and radiocarbon in the Integrated 
Forecasting System (IFS). The IFS is used operationally at ECMWF for Numerical Weather 
Prediction and for air pollution and greenhouse gases for the Copernicus Atmosphere 
Monitoring Service (CAMS) (Flemming et al., 2015, Agustí-Panareda et al., 2022). The model 
has 137 hybrid sigma-pressure levels from the surface to 0.1 hPa with a vertical resolution 
that varies with (geometric) height and is highest in the planetary boundary layer. Tracer 
advection is calculated with an efficient semi-Lagrangian scheme (Diamantakis and 
Magnusson, 2016, and a mass fixer is subsequently applied to ensure mass conservation 
(Agustí-Panareda et al., 2017). The transport model additionally includes parameterizations 
of turbulent mixing (Sandu et al., 2013) and convection (Bechtold et al., 2014). The forward 
model is run with a time step of 15 minutes. The horizontal resolution of the IFS forward model 
depends on the model configuration: the reactive-species and aerosol configuration and the 
greenhouse gas forecasts within CAMS run at a spatial resolution of 40 km and 25 km, 
respectively.  

The implementation of APO and radiocarbon in the IFS is closely coupled to the greenhouse 
gas configuration (Agustí-Panareda et al. 2014). The surface fluxes used for CO2 (in IFS 
Cy49r1) are Jena CarboScope v2020 for ocean fluxes, CAMS-GLOB-ANT for anthropogenic 
emissions, and GFAS v1.4 for fire emissions. Biogenic GPP and ecosystem respiration are 
simulated online in ECLand, with a bias correction applied to ecosystem respiration to avoid 
large-scale drifts in simulated atmospheric CO2 (Agustí-Panareda et al. 2016). More detail can 
be found in the IFS documentation on the land surface scheme and atmospheric composition 
(ECMWF, 2024ab).  

The implementation of APO in IFS is based on the implementation in TM5 presented above, 
but with some differences. Separate tracers are used to simulate the contributing fluxes, and 
the deviations in these tracer fields resulting from these fluxes are combined to obtain the total 
𝛿(𝐴𝑃𝑂) signal in a postprocessing step. We use the Jena CarboScope ocean flux and the 
GridFED O2 flux database for the anthropogenic component. The biogenic O2 flux is simulated 
by applying a fixed biogenic exchange ratio of 1.1 to the biogenic CO2 fluxes simulated online 
in IFS. O2 consumption from fires is calculated by applying a fixed exchange ratio of 1.1 to 
GFAS fire CO2 emissions. Initial development of the radiocarbon implementation has been 
performed by including the biogenic and oceanic disequilibrium fluxes and the cosmogenic 
production from Basu et al. (2020) as prescribed fluxes. Fossil fuel fluxes in this 
implementation are taken from CAMS-GLOB-ANT (Soulie et al. 2024). Future development 
steps for these schemes includes the incorporation of CORSO products (e.g. the scaled 
CESM2 ocean O2 flux product or the CORSO LPJ-GUESS 14C isotopic signatures) into the 
IFS.  
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3.3 Regional systems 

3.3.1 The Lund University Modular Inversion Algorithm (LUMIA) 

LUMIA is a Python-based framework designed for regional atmospheric inverse modeling. Its 
modular structure allows the estimation of greenhouse gas fluxes, such as fossil fuel CO2 
emissions and natural CO2 exchanges, by assimilating in situ atmospheric observations within 
a Bayesian optimization framework (Monteil & Scholze, 2021). The algorithm minimizes a cost 
function that balances the fit to observations with deviations from prior flux estimates, providing 
a statistically consistent way to refine fluxes at regional scales. 

Its modular architecture allows different components (e.g. transport models, boundary 
conditions, and inversion configurations) to be interchanged without altering the core 
framework. This flexibility supports both synthetic experiments and inversions using real 
observations, and enables the integration of the background component either through a two-
step scheme with global TM5-4DVar or by sampling background concentrations from global 
datasets via Lagrangian footprints. 

LUMIA’s modular architecture also supports multi-tracer applications. In this project, it is used 
to jointly assimilate CO2 and Δ14CO2 (Gómez-Ortiz et al., 2025a; 2025b), enabling the 
simultaneous optimization of fossil fuel emissions and natural CO2 fluxes. LUMIA has also 
been configured to perform inversions using the fossil fuel inversion framework, allowing fossil 
fuel CO2 enhancements derived from Δ14CO2 to be directly integrated into the optimization 
framework.  

Table 4 provides an overview of the inversions, methods, and input datasets used in LUMIA 
for the CORSO project. Three types of inversions are carried out:  

1. CO2-only: a conventional CO2 inversion that optimizes only net ecosystem exchange 
(NEE), 

2. CO2-Δ14CO2: a dual-tracer inversion that jointly optimizes fossil fuel emissions, NEE, 
and terrestrial disequilibrium fluxes, and 

3. ffCO2-only: a fossil fuel inversion that assimilates Cff pseudo-observations to estimate 
fossil fuel emissions. 

In the first set of inversions, all three inversion approaches are performed, using 2021 as a 
base year to prepare the system for the 2024 Δ14CO2 intensive flask sampling campaign. The 
CO2-only inversions are used to assess the “carry-on” bias that arises when fossil fuel 
emissions are prescribed, as shown by Basu et al. (2016). The fossil fuel inversion 
configuration is evaluated alongside the dual-tracer inversion as a lightweight alternative that 
requires fewer computational resources and can be used for rapid testing. 

Beyond the 2021 reference year, additional inversions are conducted to incorporate the results 
of the 2024 Δ14CO2 intensive sampling campaign and to produce a consistent multi-year 
reconstruction of fossil fuel emissions. For 2015-2024, only the fossil fuel inversion 
configuration is applied, using precomputed ffCO2 observations to optimize fossil fuel 
emissions. For 2024, a full dual-tracer inversion is performed, assimilating the CO2 
observations and the flask Δ14CO2 samples collected during the campaign.  

Together, these inversion setups enable (i) evaluation of methodological differences between 
CO2-only, dual-tracer, and fossil fuel inversion approaches, (ii) production of a multi-year fossil 
fuel emission time series, and (iii) integration of the 2024 Δ14CO2 campaign results into a 
coherent regional inversion framework. 
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Table 4. Overview of the inversions, methods, and input datasets used in LUMIA for the 
CORSO project. 

Inversion 
period 

Inversion 
approach 

Prior fossil 
fuel product 

Optimized 
fluxes 

Observations4 Background 

2021 
(1 inversion 

per approach 
and per prior 

fossil fuel) 

CO2-only  

CTE-HR1 

EDGARv4.32 

ODIAC3 

𝐹𝑏𝑖𝑜 
CO2 
observations 
at midday 

CO2: 
Interpolated last 
particle position 
from CAMS5. 

CO2-Δ14CO2 
𝐹𝑓𝑓, 𝐹𝑏𝑖𝑜, 

𝐹𝑏𝑖𝑜𝑑𝑖𝑠 

CO2 
observations 
at midday 

Δ14CO2 
integrated and 
flask 

CO2: 
Interpolated last 
particle position 
from CAMS5. 
Δ14CO2: 
Smoothed data 
from MHD using 
NOAA’s curve 
fitting function6. 

ffCO2-only 𝐹𝑓𝑓 

Precomputed 
ffCO2 from 
CO2 and 
Δ14CO2 
integrated 
and flask 
samples 

Δ14CO2: 
Smoothed data 
from MHD using 
NOAA’s curve 
fitting function6. 

2015-2024 ffCO2-only 

EDGARv4.32 
(2015-2017) 
CTE-HR1 
(2018-2024) 

𝐹𝑓𝑓 

Precomputed 
ffCO2 from 
CO2 and 
Δ14CO2 
integrated 
and flask 
samples 

Δ14CO2: 
Smoothed data 
from JFJ using 
NOAA’s curve 
fitting function6. 

2024 CO2-Δ14CO2 CTE-HR1 
𝐹𝑓𝑓, 𝐹𝑏𝑖𝑜, 

𝐹𝑏𝑖𝑜𝑑𝑖𝑠 

CO2 
observations 
at midday 

Δ14CO2 
integrated and 
flask samples 

CO2: 
Interpolated last 
particle position 
from CAMS5. 
Δ14CO2: 
Smoothed data 
from JFJ using 
NOAA’s curve 
fitting function6. 

1van der Woude (2022). 
2Koch & Gerbig (2025). 
3Oda & Maksyutov (2023). 
4ICOS RI et al. (2025). 
5CAMS (2020). 
6https://gml.noaa.gov/ccgg/mbl/crvfit/crvfit.html, last access: 18 November 2025. 
 

https://gml.noaa.gov/ccgg/mbl/crvfit/crvfit.html
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3.3.2 Regional Hierarchical Inverse Modelling Environment (RHIME) 

RHIME has been frequently used for regional trace gas inversions of various atmospheric 
species across the globe (e.g., Ganesan et al., 2014; Say et al., 2021; Western et al., 2022). 
Here, RHIME has been adapted for constraining fossil fuel CO2 emissions estimates from 
atmospheric flask samples of CO2 and Δ14CO2, and separately from atmospheric observations 
of APO (formed from concurrent flask samples of atmospheric CO2 and δ(O2/N2)). 

 

RHIME uses a MCMC (Markov Chain Monte Carlo) approach to quantify a mean multiplicative 
scaling (with confidence intervals) of a priori fluxes for each sector of interest. For the Δ14CO2-
CO2 inversions, an estimate of fossil fuel emissions and the terms that comprise β (the 
terrestrial biosphere correction split between GPP and respiration, and the nuclear power plant 
contributions) were inferred from atmospheric observations.  

 

For the APO inversions, we assume terrestrial biosphere APO fluxes are entirely masked out 
through the construction of APO. We therefore used RHIME to infer fossil fuel APO emissions 
and oceanic APO fluxes from the observations. We assumed that any land-based fluxes are 
entirely fossil fuel in origin and any offshore fluxes are from ocean-atmosphere exchanges. 

 

3.3.2.1 RHIME radiocarbon setup 

The NAME-RHIME simulations used a similar approach as LUMIA, but with some key 
differences. Atmospheric observations of Δ14CO2-CO2 were combined following the mass 
balance approach in Section 3.1.1. Instead of applying the β correction to the observations to 
derive an estimate for fossil fuel CO2, we keep β on the right hand side, 

 

to reduce any potential biases introduced to the observations when correcting for β. 

 

Each term on the right hand side of this equation was optimised in RHIME. EDGAR (Emissions 
Database for Global Atmospheric Research) v8.0 fossil fuel emissions were used as the fossil 
fuel emissions a priori estimate; terrestrial biosphere CO2 fluxes from ORCHIDEE v2.2, VPRM 
(Vegetation Photosynthesis and Respiration Model; v2023) and LPJ were used and 
compared; terrestrial biosphere Δ14CO2 estimates from LPJ were used; and interpolated 
measurements of atmospheric Δ14CO2 from Jungfraujoch that were representative of northern 
hemispheric variations were used as the background Δ14CO2 estimate. Nuclear power plant 
emissions estimates were taken from RADD (for European power plants) and RIFE (for UK 
power plants). Fluxes were combined with footprints produced from the UK Met Office’s 
Numerical Atmospheric transport Modelling Environment (NAME v8.2; Jones et al., 2007) to 
simulate background-subtracted mole fractions (as described in White et al., 2019). These 
simulations were then combined as shown in the above equation. 

 

An a priori emissions uncertainty probability density function (PDF) is assigned to each flux 
sector. For the fossil fuel emissions, this was ~TN(1,0.152); for the terrestrial biosphere 
isofluxes these were ~TN(1,2.02) for GPP and respiration; and for the nuclear power plants 
this was ~TN(1,1.02). All PDFs were bounded as [0,∞] to prevent unrealistic, negative 
solutions. The nature of this approach means that the background Δ14CO2 estimates (∆bg) are 
not independently optimised in the inversion, but rather form part of the flux sector 
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optimisations. The crucial point being that RHIME optimises the isofluxes for each sector 
rather than just the CO2 flux. For fossil fuel CO2, the emissions themselves are optimised, but 
the terrestrial biosphere CO2 fluxes are entangled with their Δ14CO2 values and ∆bg.  

 

3.3.2.2 RHIME APO setup 

Since atmospheric inversions are being performed in “APO-space” (as in Rodenbeck et al. 
2023) sectoral flux field estimates for CO2 and O2 need to be combined to create APO flux 
fields. This was guided by the definition of APO in Section 3.1.2 and used the approach 
presented in Rodenbeck et al. (2023). Only fossil fuel and ocean APO fluxes were used in the 
model since, by construction, there are theoretically no APO fluxes from the terrestrial 
biosphere.  

 

Fossil fuel fluxes of CO2 are related to O2 fluxes by their molar exchange ratio, ⍺f such that  

𝐹𝑓
𝑂2 = −𝛼𝑓𝐹𝑓

𝐶𝑂2. 

 

From the definition of APO and the above equation, the fossil fuel APO flux field is defined as 

𝐹𝑓
𝐴𝑃𝑂 = −(𝛼𝑓 + 𝛼𝑙)𝐹𝑓

𝐶𝑂2. 

 

Here, ⍺l is the CO2:O2 molar exchange ratio for the land biosphere and takes a value of 1.1.  

 

Monthly fossil fuel CO2 fluxes from EDGAR v8.0 (Crippa et al., 2021) were combined with 
fossil fuel CO2:O2 molar exchange ratios from the GridFED v2024 database (Jones et al. 2021) 
to construct fossil fuel APO flux fields. EDGAR provides 0.10ox0.10o global anthropogenic CO2 
emissions estimates from 1970-2023 which were regridded using a mass-conservation 
approach to match the NAME footprint domain and spatial resolution. For 2024, the 2023 
emissions field was used.  

 

Ocean APO fluxes were similarly constructed from flux fields of CO2, O2, and N2. Keeling and 
Manning (2014) demonstrated that a first order approximation of δ(O2/N2) oceanic fluxes can 
be modelled as 

𝑍𝑒𝑓𝑓 = 𝑍𝑜2 −
𝑋𝑂2

𝑋𝑁2
× 𝑍𝑁2. 

Here, ZO2 and ZN2 are the respective O2, and N2 net ocean-atmosphere flux exchanges. XO2 
and XN2 are the reference oxygen and nitrogen standard values, respectively. A value of 
0.79019 is used for XN2.  

 

Combined with the net ocean-atmosphere CO2 flux exchange, ZCO2, we can model oceanic 
APO fluxes as 

𝐹𝑜𝑐𝑒
𝐴𝑃𝑂 = 𝑍𝑒𝑓𝑓 − 𝛼𝑙 𝑍𝐶𝑂2. 

 

Like Chawner et al. (2024), we used oceanic CO2, O2, and N2 flux fields from NEMO-ERSEM 
(Butenschön et al., 2016; Madec and NEMO System Team, 2022), which were combined into 
an APO oceanic flux following the above equation for ocean APO fluxes. The NEMO-ERSEM 
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ocean fluxes have a daily time resolution and raw spatial resolution of 0.066ox0.110o, which 
were also regridded using a mass-conservation approach to match the NAME domain and 
spatial resolution. Since NEMO-ERSEM fluxes were only available until 2015, we used the 
2015 fluxes to model the oceanic APO fluxes for 2022-2024.  

 

As the focus of this study was to use APO observations to constrain land-based fossil fuel CO2 

emissions estimates, using an outdated version of the ocean fluxes is less problematic 
provided a sufficiently large uncertainty is assigned to these fluxes in the inversion, and the 
ocean and land parts of the inversion domain are optimised using separate basis functions 
with distinct land and sea areas that do not overlap. Furthermore, we did not find a statistically 
significant trend in the NEMO-ERSEM ocean fluxes in the model domain over 2005-2015 (the 
period we had data available).  

 

The Jena Carboscope (JC) inverse model (Rodenbeck et al. 2023) produced daily global 
estimates of APO values for 2002-2021 from global inversions of APO observations from 11 
global stations and ship measurements (JC version ``apo99XS\_v2022''). The global stations 
used in this model do not include any of the ICOS measurement stations used in the RHIME 
regional inversion. The JC APO values were extrapolated to 2024 at three latitudinal bands 
(30oN-90oN; 30oS-30oN; 90oS-30oS) using a linear regression applied to the 2017-2021 APO 
values. From this linear regression, we detrended the JC APO values and propagated the 
2017-2021 mean APO seasonal cycle forwards in time to provide daily APO value estimates 
for 2022-2024. Whilst extrapolation can introduce large uncertainties into the data and is 
generally not recommended, this was the best approach we had at the time. The JC APO 
values formed the boundary condition fields along the edges of the NAME model domain for 
each month. Boundary conditions were calculated using the NAME particle density at the edge 
of the model domain (see below). A scaling is calculated for each cardinal boundary in each 
1-month period of inference to derive posterior boundary condition values. 

 

A priori emissions uncertainty PDFs were assigned to each APO flux sector and to the 
background APO values. For the APO fossil fuel flux, this was ~TN(1,0.352) bounded at [0,∞) 
to prevent unrealistic, negative solutions; for the ocean APO flux this was ~N(1,6.02); and for 
the background APO ~N(1,0.082).  

 

3.3.2.3 RHIME setup 

In both sets of inversions, the modelling domain is split into 55 scaling regions (basis functions) 
for each flux sector. The scaling regions over Europe (30oW–42oE longitude and 29oN–77oN 
latitude) are not spatially fixed and are recalculated for each month. Scaling regions in the rest 
of the inversion domain are always spatially fixed. The geographical coverage of each scaling 
region in Europe is calculated from multiplying the mean footprint field with the converging 
estimated absolute flux field for each month. The inversion domain is split (with land and sea 
areas kept distinct in each scaling region) such that summing the grid cells in each scaling 
region yields approximately the same footprint-flux value. Scaling regions closer to the 
measurement stations encompass fewer grid cells (and a smaller geographical area) than 
those much further away which encompass larger geographical areas. 

 

The model-data uncertainties were calculated as the sum in quadrature of the observational 
uncertainty and the model uncertainty. The model uncertainty was taken as the median 
simulation-observation residual for the inversion period. 
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Like Saboya et al. (2024), we used a No-U-Turn (NUTS) sampler (Hoffman & Gelman, 2014) 
to sample from the posterior PDF. The samplers used a total 8000 iterations (discarding the 
first 1000) with two chains running in parallel. A Gelman-Rubin diagnostic is used to check for 
parameter convergence in both chains.  

 

Inversions were performed over four-month periods from 2022-2024 for Δ14CO2-CO2. There 
was not enough data pre-2024 for RHIME to converge to a mean scaling value for smaller 
time periods, no matter the length of the chain. For APO, monthly inversions were performed 
for 2024 as there were more data available than for Δ14CO2. 

 

4 Results 

4.1 Global decadal scale 

4.1.1 CIF-LMDZ results (LSCE) 

 
The results of the inversion using the CIF-LMDZ variational inversion framework, co-
assimilating CO2 and Δ14CO2 over the period from January 1998 to December 2024 with a 
transport and control horizontal resolution of 1.3° latitude x 2.5° longitude, show the system is 
able to assimilate and reproduce observed CO2 and Δ14CO2 observations within the control 
framework. This system shows significant improvements from previous iterations of the model 
as described in Milestone Report 7, namely in the assimilation of radiocarbon and in the control 
of its isotopic signatures. The main explanations are the increase of the resolution of the CIF-
LMDz configurations compared to the earlier version of the system, improvements in the 
definitions of the observation errors, and a better filtering of the observations to be assimilated, 
including a shift of the coastal sites in the sea when modelling them. As a result, the inversion 
cost function is far less focused on a few CO2 time series at sites poorly modeled with the 
coarse initial configuration, and it better matches the overall ensemble of CO2 and Δ14CO2 
timeseries. The control of the isotopic signatures also enhanced the ability to fit both CO2 and 
Δ14CO2 timeseries. An analysis and discussion of the different components of the inversion 
results is given below. 

 

Figure 1 and Figure 3 show the results of the inversion in the form of a time series of the 
observations and simulations for CO2 and Δ14CO2, respectively, for a select subset of eight 
stations over the period of the simulation (1998-2024). These eight stations were selected as 
representative of the global distribution of CO2 and Δ14CO2 due to their varying locations from 
high northern latitudes (ALT), northern mid-latitudes (CBW, KRE, JFJ, MHD), mid-latitudes 
(MLO), southern mid-latitudes (BHD) and high southern latitudes (SPO). The stations include 
a mix of background locations (ALT, MLO, SPO), background locations with some occasional 
urban influence (BHD, JFJ, MHD), and more urban influenced locations (CBW, KRE). As a 
result, the stations show a mix of which flux mostly likely dominates the local CO2 and Δ14CO2 
concentrations. 

 

For all the stations simulated, the results show a much-improved fit to the CO2 observations 
for the posterior simulation when compared with the prior simulation. Prior CO2 is generally 
able to capture the seasonality of observed CO2 but generally shows a higher growth rate, 
leading to an overestimation at most stations included in the model. The largest discrepancies 
between prior CO2 and observations occur in the second decade of the simulation as the 
higher CO2 growth rate compounds over time (Figure 1). The posterior CO2 is better able to 
capture the observed CO2 after 12 iterations of the variational scheme, maintaining the 
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seasonality while improving the growth rate to match the observations even at the end of the 
simulation period. 

 

 

Figure 1: Time series of the daily average CO2 observations and their prior and posterior simulations 
using CIF-LMDZ for a subset of eight stations used in the standard resolution configuration of the model. 
The stations are located at Alert, Canada (ALT); Bearing Head, New Zealand (BHD); Cabauw, 
Netherlands (CBW); Křešín u Pacova, Czechia (KRE); Mauna Loa, Hawaii, USA (MLO); Jungfraujoch, 
Switzerland (JFJ); Mace Head, Ireland (MHD); and South Pole, Antarctica (SPO). 

 

The improvement in the posterior CO2 is further illustrated in Figure 2, which shows the 
average RMSE of each station for the prior and posterior simulations. There are a total of 149 
stations included in the simulation that were used to assimilate CO2 observations. Each station 
shows a lower RMSE for the posterior estimate when compared to the prior estimate, 
indicating the better fit of the posterior CO2 to the observations at every station simulated and 
suggesting that the inversion system was able to adequately assimilate the CO2 observations. 
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Figure 2: The average RMSE (in ppm) of the prior and posterior CO2 simulations for each CO2 station 
included in the model (149 total). 
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In the same vein as the results for CO2, the results for Δ14CO2 show a much-improved fit to 
the Δ14CO2 observations for the posterior simulation when compared to the prior simulation. 
In the prior simulation, Δ14CO2 is largely underestimated with values significantly lower than 
atmospheric observations over most of the simulation period indicating a lower growth rate of 
Δ14CO2 in the model than is observed in the atmosphere. This lower growth rate compounds 
over the 25+ year simulation period, leading to a larger discrepancy between the prior 
simulation and the observations as time goes on (Figure 3). Both CO2 and Δ14CO2 thus show 
growth rates that differ from observations, but their respective growth rates have opposite 
trends in the model. The slow growth rate has been largely corrected after 12 iterations of the 
variational scheme and the posterior Δ14CO2 matches much more closely with the 
observations (Figures 2 and 3). However, the posterior simulated Δ14CO2 does not fully 
capture the seasonality patterns seen in the atmospheric observations, most notably at the 
remote stations, despite the improvement in the posterior atmospheric Δ14CO2 growth rate. 

 

The significant improvement in the posterior Δ14CO2 compared to the prior Δ14CO2 simulation 
is consistent across all the stations simulated. Figure 4 shows the average RMSE for prior and 
posterior Δ14CO2 estimates for the 40 stations from which Δ14CO2 was assimilated in the 
model. The RMSE is decreased across all stations by a factor of at least 2, and in some cases 
by a factor of 10, indicating the better fit of the posterior Δ14CO2 to the observations compared 
to the fit of the prior Δ14CO2 to the observations. This improvement represents crucial progress 
from the Milestone 7 report.  
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Figure 3: Time series of the integrated and flask Δ14CO2 observations and their prior and posterior 
simulations using CIF-LMDZ for a subset of stations used in the standard resolution configuration of the 
model. The stations are located at Alert, Canada (ALT); Bearing Head, New Zealand (BHD); Cabauw, 
Netherlands (CBW); Křešín u Pacova, Czechia (KRE); Mauna Loa, Hawaii, USA (MLO); Jungfraujoch, 
Switzerland (JFJ); Mace Head, Ireland (MHD); and South Pole, Antarctica (SPO). 

 

Figure 4: The average RMSE (in per mil) of the prior and posterior simulations of Δ14CO2 for each of 
the stations included in the model (40 total).  
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Figure 5 shows the inversion results as a time series of the globally averaged annual prior and 
posterior CO₂ flux estimates over the simulation period (1998–2024) for the three main source 
categories: net ocean fluxes (OCE), net biosphere fluxes (NEE), and fossil-fuel emissions. In 
these flux estimates, NEE shows the largest difference between the prior and the posterior 
estimates after 12 iterations of the variational configuration. The prior simulation of CO2 
displays an overestimation of the CO2 growth rate in the atmosphere, due to the use of a 40-
year climatological NEE (without inter-annual variability) poorly accounting for the regular 
increase of the natural sink, especially during the two past decades. The inversion largely 
corrects this bias by adjusting the terrestrial flux. The posterior NEE flux estimates exhibit 
significant adjustments during certain periods (notably 2008–2012 and 2018–2022) to 
compensate for the lack of variability in the prior estimates. 

 

Overall, these results indicate that the inversion generally increases the global natural carbon 
sink. Most of the difference between the prior and posterior estimates of the total global flux 
arises from changes in the NEE (Figure 5), with an additional contribution from the slight 
decline in the posterior net-ocean flux. In contrast, the inversion produces very little adjustment 
to the fossil-fuel flux estimates at the global scale. 

 

Figure 5: Global averaged annual prior and posterior CO2 fluxes for the net oceans (OCE), net 
biosphere (NEE), fossil fuels (FF), and total (TOT) fluxes. Prior fluxes are shown in black and the 
posterior is in green. 

 

A further look at the change in the fossil fuel CO2 emissions over the whole analysis period 
from the inversion is provided by the map of increments in Figure 6. The value of the change 
is small, even locally, with less than 0.01% average change between the mean prior and 
posterior CO2 fossil fuel emissions over the time of the inversion. The largest changes are 
clustered in areas with high fossil fuel emissions: there are slight decreases in the emissions 
estimates in Europe with some even smaller decreases along the eastern coast of North 
America and eastern Asia. Hence the multidecadal global inversion is primarily dominated by 
impact of the uncertainties in natural fluxes, even with the assimilation of the Δ14CO2 
observations in the system. 
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Figure 6: Map of the relative (percentage) change in fossil fuel emissions averaged over the period of 
the simulation (1998-2024) in the standard resolution configuration (with a logarithmic colorscale). 

 

The inversion also applies significant corrections to the δ14CO2 isotopic signatures of the 
individual gross components that comprise the natural fluxes. Figure 7 shows the global 
averaged prior and posterior isotopic signatures for the two gross components of each of the 
ocean and biosphere fluxes. The inversion makes slight adjustments to the isotopic signatures 
of NPP (decrease) and OA (increase) but the largest adjustment is in the isotopic signature of 
HR. 

 

Figure 7: Global monthly averaged isotopic signature adjustment (posterior - prior) of δ14CO2 for AO, 
OA, HR, and NPP. Note the different scales on the y-axis for each plot. 

 

A sensitivity study was conducted to explore the effects of the prior estimate of the biosphere 
isotopic signatures on the model simulations of Δ14CO2, given the importance of these fluxes 
in the global inversion. Two biosphere isotopic signature products were used: the first from 
the LPJ terrestrial biosphere model as described above and in Deliverable D3.4; the second 
from a prior study on δ14CO2 by Wang, 2016 that used the ORCHIDEE terrestrial biosphere 
model to estimate HR and NPP isotopic signatures on a global scale resolution of 1.875° 
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latitude × 3.75° longitude over a period from 1990 to 2007 (inclusive). The details of the 
ORCHIDEE modeling of radiocarbon can be found in Wang, 2016. Briefly, the 14C budget of 
the land biogenic CO2 flux is calculated using an emulator of the ORCHIDEE-MICT model with 
12 plant functional types, each with eight biomass pools, four litter pools, and three soil carbon 
pools. The biospheric 14CO2 fluxes from ORCHIDEE-MICT are scaled together so that the 
global average decreasing trend in simulated Δ14CO2 matches the mean trend from observed 
background atmospheric radiocarbon records from 1998 to 2007, as further described in 
Wang, 2016. 

 

The results from the sensitivity study are shown in Figure 8, with the four different 
combinations of products for the HR and NPP isotopic signatures. The model shows some 
sensitivity to the NPP isotopic signature product with a slight change in the simulated δ14CO2 
depending on the product used. However, the HR isotopic signature plays a large role in the 
model’s ability to match the δ14CO2 observations and trend. Over a ten-year simulation period, 
the difference in HR isotopic signature between the two products leads to a difference of nearly 
40 per mil in the simulated δ14CO2 due to an average difference of about 45% in the HR 
isotopic signature between LPJ and ORCHIDEE. The use of the signature for HR from 
ORCHIDEE, whose 14CO2 fluxes have been scaled to match the mean observed background 
trend, provides a good fit with the different background sites. In general, the 14C in land 
biosphere pools and in CO2 fluxes emitted by this reservoir to the atmosphere are highly 
uncertain (with more than 20% rescaling needed for the default simulations to fit the trends in 
observed background atmospheric radiocarbon records) as discussed in Randerson et al, 
2002 and Naegler and Levin, 2009, and as shown by the 45% average difference between 
the HR isotopic signature from LPJ and ORCHIDEE. This uncertainty leads to potentially 
consequential discrepancies in simulations of Δ14CO2 at the global level. 

Figure 8: Time series of δ14CO2 derived from different combinations of two different isotopic signature 
products for the HR and NPP from LPJ or ORCHIDEE. The data shown are the observations and 
simulations at Alert, Canada (ALT). 

 

The CIF-LMDZ variational inversion framework was also configured to run the transport on a 
higher resolution grid of 0.7° latitude x 1.4° longitude over the period from January 2021 to 
December 2024 in order to take advantage of the intensive sampling of Δ14CO2 performed in 
Europe during 2024 as part of CORSO (albeit keeping a control horizontal resolution of 1.3° 
latitude x 2.5° longitude). As with the standard transport resolution grid, the results of the 
inversion with transport at the higher resolution show the system can assimilate and reproduce 
observed CO2 and Δ14CO2 observations within the control framework within uncertainties. The 
results from this inversion, performed at the global scale but with the objective to focus on the 
European continent (defined as 35° to 70° in latitude and -25° to 40° in longitude). 
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Figure 9 shows the inversion results for atmospheric CO₂ and Δ¹⁴C in the higher-resolution 
transport configuration at a selected subset of four European stations over the simulation 
period (2021–2024). The time series include data from two background stations (JFJ and PAS) 
and two stations with moderate urban influence (CBW and KRE). The latter two stations were 
among those that underwent intensive sampling in 2024. 

 

These results similarly show a much-improved fit to the CO2 and the Δ14CO2 observations for 
the posterior simulation when compared to the prior simulation. The over-estimation of CO2 
and the under-estimation of Δ14CO2 is evident in the time series in Figure 9, but the 
discrepancy is not as large as in Figure 1 and 3 due to the shorter timescale of this inversion. 
In both cases, the posterior CO2 and Δ14CO2 estimates are able to correct for the respective 
difference in simulated and observed growth rates after 19 iterations of the variational system. 
The posterior CO2 and Δ14CO2 thus match well with the observed CO2 and Δ14CO2 at each of 
the stations where these data are assimilated. 

 

 

Figure 9: Time series of the daily average CO2 and Δ14CO2 observations compared with the prior and 
posterior simulations as well as the difference between the simulations and the observations (“Diff”) 
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using CIF-LMDZ for a subset of four stations used in the higher resolution configuration of the transport 
model. The stations are located at Cabauw, Netherlands (CBW); Jungfraujoch, Switzerland (JFJ); 
Křešín u Pacova, Czechia (KRE); and Pallas, Finland (PAL). 

 

Figure 10 shows the flux adjustments made by the inversion on monthly and annual 
timescales, spatially averaged over the European continent, when transport is performed with 
the higher-resolution configuration. These results correspond to iteration 19 of the variational 
inversion. Over this period and at this transport resolution, the inversion adjusts the NEE flux 
to reduce the CO₂ growth rate. However, in this configuration the inversion also exerts greater 
control over, and makes larger adjustments to, the ocean and fossil-fuel fluxes than in the 
longer-timeframe, standard-resolution configuration. 

 

The average change in the fossil fuel fluxes over the 2021 to 2024 period and the European 
continent using the inversion configuration with a higher resolution transport is shown in Figure 
11. This inversion indicates a larger adjustment to the fossil fuel fluxes, with changes on an 
average scale of about 5% over Europe. The changes are primarily in north-western Europe, 
in areas where the majority of Δ14CO2 observations are located. There is a general decrease 
in posterior fossil fuel estimates in the region around Germany and a slight increase in the 
posterior estimates in the region around northern France and southern England. 

 

 

Figure 10: Monthly and annual prior and posterior CO2 fluxes averaged over a European domain (35° 
to 70° in latitude and -25° to 40° in longitude) for the net oceans, net biosphere, fossil fuels, and total 
fluxes (when using the high resolution configuration of LMDZ). 
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Figure 11: Map of the percentage change in fossil fuel emissions in Europe averaged over the time of 

the simulation (2021-2024) at 1.3° latitude x 2.5° longitude resolution (when using the high-resolution 
configuration of LMDZ). 

 

 

4.1.2 CTE (Wageningen University)  

 

With the CTE-LW-SW system, we have performed global inversions for the period 2000-2024, 
assimilating CO2, Δ14CO2 and δO2/N2. Figure 12 below shows the results for the comparisons 
of the three tracers to observations at the station Alert as an example. The Long-Window 
posterior matches the observations well for all three species.  

 

Figure 12: Simulated atmospheric CO2 (top), Δ14CO2 (middle) and δO2/N2 (bottom) at Alert for the 
period 2000–2024. The results shown are from simulations with posterior fluxes from the CTE Long 
Window system. A zoom of the final 5 years of this record is presented in Figure 15 below. Note that in 
the later years, there were less observations available for Δ14CO2 and δO2/N2 at this location. 
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These posterior results improved much compared to a forward simulation of the prior fluxes 
(see Figure 13). Especially for Δ14CO2, the deviation between prior simulations and 
observations is large, in this case for example at Alert, but this is also seen at other stations. 
This apriori imbalance is likely related to biases in the terrestrial and ocean disequilibrium flux. 
But it can also possibly be partly explained by too short spin-up time for this tracer. For Δ14CO2, 
the cosmogenic production term leads to a large gradient between the stratospheric and 
tropospheric values absent in the starting boundary condition, and it takes time to see this 
signal at the surface stations. For δO2/N2, the prior simulation reproduces the observations 
already quite well, but the growing imbalance between the simulated and observed values is 
due to systematic underestimation of the global land and ocean sinks.  

 

 
Figure 13: Simulated atmospheric CO2 (top), Δ14CO2 (middle) and δO2/N2 (bottom) from the prior fluxes 
using a forward simulation.  

 

Figure 14 below shows the prior and posterior fluxes. In the global scale CTE Long Window 
system, all fluxes shown here were optimised. The figure shows that the disequilibrium fluxes 
for Δ14CO2 are significantly adjusted, although with remaining uncertainty. We therefore 
decided to keep these fluxes fixed in the next experiments where we zoom in on Europe with 
the Short Window simulation. These disequilibrium fluxes might be improved by improving 
process based models, which could be part of a follow up study. δO2/N2 outgassing from the 
oceans is relatively well simulated in the prior already, and also kept fixed in the Short Window 
step. 
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Figure 14: Prior (blue) and posterior (orange) fluxes from the global CTE Long Window joint inversion 
assimilating atmospheric CO2, Δ14CO2 and δO2/N2 observations. The blue shaded area shows the 
global aggregated prior uncertainty assumed in the prior.  

 

Figure 15 zooms into the last 5 years of the global Long Window inversion. Here, we had less 
observations available from the global network. It is important to have a good availability of 
global stations, to perform global inversions, but also to get good constraints for Europe it is 
necessary to have a good background. 
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Figure 15: Simulated atmospheric CO2 (top), Δ14CO2 (middle) and δO2/N2 (bottom) at Alert. For the 
period 2020–2025 using the CTE Long Window system. 

 

Next, we zoom in on Europe for the year 2024, in which we had the additional observations 
thanks to CORSO. For this, we use the CTE Short Window system that starts off from the 
posterior of the Long Window system. We see a good match to observations in Europe, e.g. 
at Cabauw as shown in Figure 16, already in the LW posterior, which is the prior for the SW 
inversion (except for the biosphere net exchange fluxes). The figure shows that there are 
certain observations that have relatively low Δ14CO2 and δO2/N2 values, which are likely local 
signals, influenced by fossil fuel emissions. These local signals are not always well captured 
by our system, mostly due to the coarse spatial resolution (3x2 degrees lat-lon), also in the 
vertical direction. This is a topic for follow up research. Overall, this is a good starting point for 
the SW inversion. We have performed different experiments in which we have reduced the 
prior fossil fuel emissions, to see if the inversion can retrieve the input GridFED emissions.  
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Figure 16: Simulated atmospheric CO2 (top), Δ14CO2 (middle) and δO2/N2 (bottom) at Cabauw for the 
period 2024–2025 from CTE-LW-SW. The observations were part of the intense CORSO sampling 
campaign. Note that both radiocarbon and oxygen show local signals in months 1-3 and 10-12 which 
may be related to fossil fuel signals. However these are not as strong in the simulations which is likely 
related to the coarse model resolution.  

 

In our CTE-SW experiments, we have tested the influence of the assimilation of the different 
tracers. In Figure 17 we show the estimated emissions for Germany from these experiments. 
The experiment in which we assimilate all tracers (CO2, Δ14CO2 and δO2/N2) matches the 
GridFED emissions closely in the first months of 2024, but gives a higher value of the 
emissions in the September-December period. For this inversion, we also match the 
observations best (see Figure 18). This pattern of larger emissions in Sept-Dec is similar for 
the Δ14CO2-only inversion. However for that inversion, the simulations of CO2 and δO2/N2 show 
a larger deviation in comparison to the observations.  
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Figure 17: Fossil fuel estimate for Germany from inversions using different sets of observations. The 
red line shows the reduced fossil fuel emissions that were used as the prior in these experiments. The 
black line represents the GridFED emissions. Note that the posterior uncertainty is likely to be 
underestimated.  
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Figure 18: Monthly mean bias of observations at a selected set of sites over central and north-west 
Europe. Sitecodes of the selected sites are as follows: 'cbw', 'trn', 'oxk', 'ste', 'hfd', 'ope', 'wao', 'gat', 
'sac', 'lin'. For Δ14CO2 and δO2/N2 the CORSO flask measurements were used; for CO2 the in situ ICOS 
data were used. For fair comparison, the same data is selected for each of the simulations. 

 

 

Figure 19 shows that the main uncertainty reduction in our inversions is found in North-West 
Europe, this is especially visible for panels with the ∆14CO2-only inversion, but also in the 
δO2/N2-only inversion. It shows that the current network mainly allows fossil fuel estimates for 
a relatively small part of Europe, specifically Germany, the Benelux and part of the UK, and 
that in order to estimate national scale emissions, the network should be expanded spatially. 
Note that the large uncertainty reduction shown for CO2 is related to larger spatial coverage 
and volume of data. Figure 17 already showed that CO2 by itself provides a poor constraint on 
the fossil fluxes. 
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Figure 19: Maps of relative uncertainty reduction of the fossil fuel estimates after assimilating 
observations of CO2, Δ14CO2,δO2/N2 or all three tracers combined for the CTE-LW-SW system. Note 
that the values in the figure should be interpreted relatively within each panel, and the numbers cannot 
be compared between the panels. This is because spurious correlations tend to overestimate the 
uncertainty reduction in Ensemble Kalman Filters, and hence this figure shows a qualitative picture of 
the spatial pattern to gain understanding in where the tracers add additional information. 

 

Figure 20 shows the correlations in the Net Ecosystem Exchange (NEE) and the fossil fuel 
flux estimates from the posterior ensemble. The low correlation in the Δ14CO2-only inversion 
shows that this tracer informs on fossil fuel fluxes only, whereas the δO2/N2 and CO2-only 
inversions show that these tracers also inform about the natural processes.  
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Figure 20: Correlation between posterior fossil fuel flux and Net Ecosystem Exchange (NEE) flux 
estimate for the CTE-LW-SW system for the inversions assimilation either CO2, Δ14CO2, or δO2/N2, or 
all three tracers combined. 

 

4.2 European scale inversions 

In this section, we present model comparisons with ICOS atmospheric Δ14CO2 and O2 
observations based on the regional NAME-RHIME and LUMIA systems, and fluxes using 
these inverse modelling frameworks. 

4.2.1 Inversions using NAME-RHIME 

Forward simulations of ffCO2+β (see Section 3.3) using NAME are shown in Figure 21 using 
the EDGAR and LPJ fluxes (blue) and using NAME-RHIME posterior fluxes (yellow). The 
figure indicates posterior correlations (R) between the observations and the model on the 
order of 0.7-0.8 at the two sites. 
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Figure 21: Above-baseline “uncorrected” fossil fuel CO2 contributions (Cff+β) derived from concurrent 
atmospheric Δ14CO2-CO2 observations (red circles), NAME simulations using EDGAR and VPRM (blue 
squares) and NAME-RHIME inversion results (yellow triangles) for Cabauw, NL and Lindenberg, DE 

(2022 - 2024, inclusive). The figures on the right show the observed ffCO2+β compared to the posterior 

simulation at the two sites. 

 

 

NAME-RHIME: Emissions estimates for Germany 

Figure 22 shows emissions derived for Germany using the default inversion setup for NAME-
RHIME (15% prior uncertainty per spatial basis function, 4-monthly inversions using ICOS 
flask data). A priori fluxes were taken from EDGAR and VPRM. Posterior emissions estimates 
are generally consistent with EDGAR during 2022 - 2024, with larger deviations during 2024 
than 2022 - 2023, and statistically lower emissions than EDGAR during the summer of 2024 
(May - August 2024).  

Additional inversions were performed to indicate the level to which these inversions were 
influenced by the prior emissions and the sampling density. 
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Figure 22: fossil fuel CO2 emissions estimates for Germany from EDGAR (bars) and the NAME-RHIME 
base inversion (red circles with shading indicating 68% confidence interval). Results are presented for 
4-month periods beginning at the dates indicated on the x-axis from 2022 to 2024. 

 

NAME-RHIME: Influence of prior fossil fuel flux magnitude 

NAME-RHIME inversions were performed using perturbed prior flux magnitudes, to determine 
the level to which inversion results were influenced by the prior. Figure 23 shows the results 
of two experiments, the first using EDGAR in the prior, and the second with EDGAR increased 
by 20%. Compared to the NAME-RHIME “base” run, prior uncertainty was increased to by 
100% to give the inversion the flexibility to sufficiently adjust the prior.  

As shown in Figure 23, the two inversions show more consistent fossil fuel emissions 
estimates during 2024, when sampling frequency was increased.  

 

Figure 23: NAME-RHIME flux estimates for Germany using two different prior fossil fuel emissions 
magnitudes. Bars with solid lines show the EDGAR prior, with corresponding optimised fluxes shown 
as red circles. Bars with dashed lines show EDGAR emissions increased by 20%, with the 
corresponding inversion results in blue. Flux estimates were for 4-month periods between 2022 and 
2024 (labels show the beginning of each period). Compared to the “base” NAME-RHIME inversion 
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shown in the other sections, prior uncertainty was increased by 100%, to allow the inversion to adjust 
from the “biased” prior. 

 

NAME-RHIME: Influence of sampling frequency 

A NAME-RHIME inversion was run using the same parameters as the “base” run, but in which 
the 2024 sampling frequency was reduced to the same frequency as in 2022 and 2023. Figure 
24 shows that, in this simulation, the inversions with lower sampling frequency were closer to 
the prior estimates than those with the full dataset. Combined with the results from Figure 23, 
this finding indicates that emissions estimates before 2024 are more strongly influenced by 
the prior than those in 2024. 

 

 

Figure 24: NAME-RHIME fossil fuel flux estimates for Germany with a reduced sampling frequency in 
2024 (yellow circles). The NAME-RHIME inversion using the full dataset is shown in red. 
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NAME-RHIME: Influence of atmospheric background ∆14CO2 

 

 

Figure 25: NAME-RHIME fossil fuel flux estimates for Germany with ±2‰ perturbed background 
Δ14CO2 values (blue) and the standard inversion result (red). 

 

We explored the impact of perturbing the background Δ14CO2 estimate on the fossil fuel 
emissions inferred by RHIME. A perturbation of ±2‰ was applied to the background and 
yielded fossil fuel emissions estimates very similar to the unperturbed inversion result (Figure 
25). A median difference of 4.9 Tg C yr-1 (2.7%) from the main posterior estimate was found 
with largest deviations of up to 17 Tg C yr-1 found in 2024. These differences are smaller than 
the posterior-prior difference for the main posterior emissions estimate. 

Figure 25 shows there are overlapping 68% confidence intervals between the main fossil fuel 
emissions inferred from RHIME and the background-perturbed estimates. This result seems 
to suggest background Δ14CO2 perturbations of ±2‰ do not yield statistically significantly 
different results from the main posterior emissions estimate. This was quantified by conducting 
Student t-test analyses for each sensitivity test. The results from these tests yielded p-values 
of 0.42 between the fossil perturbed results in Figure 23; 0.32 for the reduced data sampling 
results in Figure 24; 0.34 for the background perturbed results in Figure 35. In each case the 
p-value denotes the results were not statistically significantly different from the main inversion 
result. However, it is noteworthy that the highest sensitivity to boundary conditions is observed 
during 2024, when the density of observations is highest (as previously shown, before this 
period, the inversion is more prior-dominated). Notwithstanding this finding, the sensitivity to 
the boundary conditions during the summer of 2024 was small, suggesting that the drop in 
emissions observed during the summer is not due to uncertainties in the baseline. 
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4.2.2 CO2-Δ14CO2 inversions with LUMIA 

Across both Cabauw (NL) and Lindenberg (DE), the CO2-only inversions produce a clear 
adjustment in the CO2 posterior but almost no correction in Δ14CO2, as expected. Since fossil 
fuel emissions are not optimised (i.e., prescribed) in the CO2-only setup, most of the mismatch 
in the prior modelled atmospheric CO2 time series, reflected in RMSE reductions from 4.28 to 
2.49 ppm at Cabauw and from 11.18 to 3.98 ppm at Lindenberg, is absorbed through 
modifications of biospheric fluxes (Net Ecosystem Exchange) rather than through changes in 
atmospheric Δ14CO2. This leads to minimal improvement in Δ14CO2, where RMSE remains 
high (e.g. 3.79‰ at Cabauw and 23.72‰ at Lindenberg), consistent with the fact that nearly 
all of the radiocarbon signal misfit originates from fossil-fuel-driven dilution rather than 
biospheric processes. 

In contrast, the fossil fuel inversion (ffCO2) produces the opposite pattern: CO2 adjustments 
are limited, but Δ14CO2 shows substantial improvement because this method explicitly 
reconstructs fossil fuel CO2 as a radiocarbon-free dilution term. At Cabauw, the Δ14CO2 RMSE 
decreases from 4.2 to 1.37‰, and at Lindenberg from 18.11 to 6.97 ‰. These improvements 
occur despite smaller corrections in CO2 compared to the CO2-only case (e.g. posterior RMSE 
of 3.94 ppm at Cabauw and 8.39 ppm at Lindenberg), reflecting the fact that the radiocarbon 
constraint directly informs the ffCO2 pseudo-observations while CO2 alone cannot fully isolate 
the fossil fuel component. 

The dual-tracer inversion integrates both CO2 and Δ14CO2 constraints, producing consistent 
corrections in both tracers. For Cabauw, CO2 RMSE decreases from 4.28 to 2.73 ppm and 
Δ14CO2 RMSE from 4.2 to 2.05‰, while at Lindenberg reductions are from 11.18 to 3.06 ppm 
and 18.11 to 1.83‰. This joint improvement reflects the ability of the dual-tracer framework to 
redistribute adjustments between fossil fuel and biospheric fluxes while simultaneously 
resolving the radiocarbon dilution signal. The dual-tracer posterior also reproduces the 
seasonal behaviour of both tracers more accurately than the single-tracer setups, reducing 
wintertime biases driven by fossil-fuel dilution (particularly pronounced at Lindenberg) while 
capturing the magnitude and timing of the CO2 summer minimum. This balanced performance 
highlights the complementarity of the two tracers: CO2 primarily constrains biospheric 
variability, Δ14CO2 isolates fossil fuel emissions, and only their combined assimilation yields 
consistent corrections in both atmospheric signals. 
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Figure 26: Comparison of observed and posterior CO2 and Δ14CO2 time series at Lindenberg (DE) (left) 
and Cabauw (NL) (right) for 2021. Panels (A-B) show weekly mean CO2, panels (C-D) show two-week 
integrated Δ14CO2, and panel (E) show flask Δ14CO2 measurements at LIN (no flask measurements 
were available for CBW during this year). For each site, prior modelled concentrations and posterior 
results from the CO2-only, ffCO2, and dual-tracer inversions are shown together with their respective 
RMSE values. 

Figure 27 shows the monthly and annual fossil fuel CO2 emissions estimated for the EU27 
region in 2021 using the dual-tracer inversion, the fossil fuel inversion, and three different prior 
inventories (CTE-HR, EDGAR-BP, and ODIAC). The priors show similar seasonal patterns, 
with higher emissions in winter and lower emissions in summer, but their magnitudes differ 
substantially. CTE-HR produces the largest seasonal cycle, while ODIAC is much flatter. Both 
inversion approaches reduce these differences, indicating that the priors tend to overestimate 
the seasonal variability of fossil fuel emissions, particularly during the winter heating period. 

Across all three priors, the posterior estimates are generally lower than the prior values 
throughout the year. The largest reductions occur during the winter months, for example 
January and February, where EDGAR-BP drops from values above 3 Tg C day-1 to roughly 
2.2-2.4 Tg C day-1 after inversion. Summer reductions are smaller but remain consistent 
across priors. The fossil fuel inversion usually produces slightly lower monthly values than the 
dual-tracer system, reflecting the stronger constraint from Δ14CO2 when fossil fuel emissions 
are isolated directly. A quantitative comparison confirms that the differences between the prior 
and posterior estimates, although systematic, are not statistically significant when evaluated 
against their respective uncertainties. Monthly prior–posterior differences for the dual-tracer 
system range from 0.07 to 0.48 Tg C day⁻¹, while the combined 1σ uncertainties span 1.40-
2.01 Tg C day⁻¹, yielding |Z| < 0.25 for all months. For the ffCO2-only inversion, differences 

range from 0.16 to 0.67 with combined uncertainties of 1.34-1.96 Tg C day⁻¹, resulting in |Z| 
< 0.35. This indicates that the inversions consistently reduce the magnitude of fossil fuel 
emissions relative to the priors, but these adjustments remain well within the combined 
uncertainty envelopes. 
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Panel (b) of Figure 27 shows the annual totals. The priors spread widely, from about 680 to 
840 Tg C yr-1. After applying the atmospheric constraints, this range becomes much narrower. 
The dual-tracer inversion gives annual values between about 660 and 740 Tg C yr-1. The fossil 
fuel inversion produces a slightly narrower interval, around 660 to 710 Tg C yr-1. The posterior 
values of the dual-tracer inversions using CTE-HR and EDGAR are close to the EEA emission 
inventory (about 720 Tg C yr-1). This agreement indicates that the dual-tracer system can help 
reconcile differences between top-down and bottom-up approaches, even when the prior 
inventories differ substantially. The uncertainty bars also show that the dual-tracer and isotope 
budget estimates remain consistent within one standard deviation for most cases. 

Overall, the figure highlights three consistent findings: the inversions lower the annual fossil 
fuel CO2 emissions compared to the priors, the priors show stronger seasonality than 
supported by the observational constraints, and the dual-tracer and isotope budget 
approaches give broadly similar results even though they rely on different information. 

 

 

Figure 27. EU27 fossil fuel CO₂ emissions for 2021 inferred from the dual-tracer inversion and the fossil 
fuel inversion approach, compared with three prior emission inventories (CTE-HR, EDGAR-BP, and 
ODIAC). (a) Monthly mean fossil fuel CO2 fluxes (Tg C day⁻¹). Each line represents the mean of the 
three priors or posteriors. Shaded areas denote 1σ uncertainties for each estimate. (b) Annual fossil 
fuel CO2 totals (Tg C yr⁻¹) for each prior and posterior system. Error bars show 1σ uncertainties. 
Independent benchmarks from the Global Carbon Budget 2021 (GCB 2021) and the European 
Environment Agency emission inventory (EEA EI 2021) are shown as red dashed lines. 

Figure 28 shows the monthly and annual net ecosystem exchange (NEE) for the study domain 
in 2021. As seen in panel (a), all priors and posteriors capture the expected seasonal pattern 
with strong uptake during late spring and summer and net release during winter. However, the 
magnitude of the prior uptake is larger than the posterior results. Both inversion approaches 
reduce the amplitude of the seasonal cycle, especially during the peak growing season in 
May-July, bringing the NEE closer to -10 Tg C day-1 rather than the prior values that exceed -
20 Tg C day-1 for some inventories. 

The CO2-only and dual-tracer inversions produce similar monthly profiles, although the CO2-
only setup yields slightly stronger summer uptake for all priors. A statistical comparison 
confirms that these differences are not significant relative to their uncertainties: monthly prior–
posterior differences for the dual-tracer inversion range from -2.20 to 2.02 Tg C day⁻¹, while 

the combined 1σ uncertainties span 12.25-27.12 Tg C day⁻¹, yielding |Z| < 0.16 for all months. 
For the CO2-only inversion, differences range from −1.91 to 2.81 with combined uncertainties 
of 12.59-28.51 Tg C day⁻¹ and |Z| < 0.21. These results indicate that although the inversions 
reduce the magnitude of the seasonal cycle, the adjustments remain well within the uncertainty 
envelopes and are therefore not statistically significant. The similarity between the two 
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approaches reflects the limited influence of Δ14CO2 on NEE when fossil fuel corrections 
dominate the Δ14CO2 signal, as shown in Figure 26. 

Panel (b) summarizes the annual NEE for each prior and posterior. The priors span a wide 
range, from about -190 to -260 Tg C yr-1, while the posteriors cluster more tightly around -200 
Tg C yr-1. The CO₂-only approach generally produces slightly larger uptake than the dual-
tracer inversion, in line with the modest effect of Δ14CO2 on biospheric fluxes at this scale. 
Uncertainties remain large for all cases, showing that NEE is less well constrained than fossil 
fuel emissions. 

Together with the fossil-fuel results, these NEE estimates show how the dual-tracer inversion 
separates the contributions of fossil fuel emissions and biospheric fluxes: fossil fuel emissions 
are strongly adjusted by Δ14CO2, whereas NEE is shaped primarily by CO2 observations. The 
combined results indicate that the prior emission inventories tend to overestimate both fossil 
fuel emissions and biospheric uptake. 

 

Figure 28. Net ecosystem exchange (NEE) for the study domain in 2021 from prior estimates and the 
CO₂-only and dual-tracer inversions. (a) Monthly NEE (Tg C day-1) for the three prior products (CTE-
HR, EDGAR-BP, ODIAC) and their corresponding posterior estimates. Shaded areas represent ±1σ 
uncertainties. (b) Annual NEE (Tg C yr-1) corresponding to each prior and posterior. Error bars show 
±1σ uncertainties. 

 

Figure 29 shows the monthly EU27 fossil fuel CO2 emissions from 2015 to 2024 obtained with 
the fossil fuel inversion inversion. The prior emissions (dashed line) show a very regular 
seasonal cycle, with high winter values (often above 3 Tg C day-1) and a repeated summer 
minimum around or below 2 Tg C day-1. The posterior emissions (solid line) follow the same 
seasonal pattern but with a systematically reduced amplitude. Winter peaks are lower and 
summer minima are slightly higher than in the prior, which is consistent with the 2021 analysis 
where the isotope budget reduced the seasonal range of EU27 fossil fuel emissions. The 
shaded areas indicate that posterior uncertainties are smaller than prior uncertainties for most 
of the period, especially after 2017. 

Over the full decade, the inversion tends to pull emissions downward relative to the prior, 
particularly during winter. This is most evident from 2018 onward, where posterior winter peaks 
rarely exceed 3 Tg C day-1, while the prior often approaches or exceeds 3.5 Tg C day-1. A 
statistical comparison over the full 2015–2024 period shows that these adjustments remain 
modest relative to their uncertainties: monthly prior–posterior differences range from −0.45 to 
1.41 Tg C day⁻¹, while the combined 1σ uncertainties span 0.83-5.27 Tg C day⁻¹, yielding |Z| 
< 0.6 with a mean of about 0.2. Thus, although the inversion consistently shifts the prior toward 
lower winter emissions and slightly higher summer values, these changes remain within the 
uncertainty envelopes and are not statistically significant.  
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The year 2020 shows a noticeable reduction in emissions during spring and early summer. 
Although the CTE-HR prior already includes adjustments related to COVID-19 restrictions, the 
posterior still reflects this anomaly, indicating that the isotope budget remains sensitive to 
large, short-term changes in fossil fuel use. After 2020, emissions recover, but the posterior 
remains consistently below the prior during most winters, indicating that the top-down 
constraint continues to moderate the amplitude of the seasonal cycle. 

The behaviour in 2023 is different from the surrounding years and is flagged in the figure as 
needing further investigation. During this year, the posterior shows unusually low values in 
late winter and early spring, well below the prior and also below the typical levels seen in 2018-
2022. Given the absence of an obvious large-scale driver comparable to the 2020 lockdowns, 
this feature may reflect a combination of changes in observational coverage, transport 
representation, or prior errors, and should be examined more carefully in future work. 

The evolution of the radiocarbon sampling network provides context for the behaviour of the 
posterior estimates over the 10-year period. The number of Δ14CO2 samples increases from 
27 in 2015 to nearly 1500 in 2024. In the first years, when fewer than about 200 samples were 
available annually, the posterior remains generally close to the prior, although some 
differences already appear in 2016 and 2017. From 2018 onward, with more than 250–300 
samples per year, the posterior displays more frequent deviations from the prior, including the 
reduction visible around 2020. By 2024, the substantially higher number of observations 
coincides with narrower posterior uncertainty bands compared with the early years. These 
multi-year inversion results are partially (2015-2022) also included as part of Task 2.3 of the 
HEU AVENGERS Project (grant agreement no. 101081322) since the development of the 
LUMIA radiocarbon framework was co-funded by both projects. 

 

Figure 29. Monthly EU27 fossil fuel CO₂ emissions for 2015–2024 from the fossil fuel inversion. The 
dashed line shows the prior emissions and the solid line the posterior estimates, with shaded areas 
indicating ±1σ uncertainties. 

Figure 30 shows the 2024 EU27 fossil fuel CO2 emissions using the prior (CTE-HR) and two 
inversion configurations: AllObs, which uses all available Δ14CO2 observations, and Flask-
only, which uses only flask samples. As in earlier years, the prior displays a pronounced 
seasonal cycle with high emissions during winter and lower emissions in summer. Both 
inversion setups reduce this amplitude, especially between January and May, where posterior 
emissions remain well below the prior for all months. 

The Flask inversion consistently yields the lowest monthly emissions throughout most of the 
year. Its spring minimum reaches values close to 1.3 Tg C day-1, compared with roughly 1.5 
TgC day-1 in the AllObs setup and around 1.7 Tg C day⁻¹ in the prior. Both posterior time series 
also show smoother seasonal transitions compared with the prior, suggesting that the Δ14CO2 
constraints moderate the monthly variability. Posterior uncertainties are narrower than prior 
uncertainties across all months, indicating a stronger atmospheric constraint, particularly with 
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the Flask setup. A statistical comparison confirms that the reductions imposed by the 
inversions remain well within the combined posterior–prior uncertainty envelopes: for EU27, 
monthly prior-posterior differences range from 0.15 to 0.42 Tg C day⁻¹ for the AllObs inversion 
and 0.23 to 0.66 Tg C day⁻¹ for the Flask inversion, while the combined 1σ uncertainties span 

0.65-1.59 Tg C day⁻¹, yielding |Z| < 0.9 for all months. Thus, although the posterior consistently 
lies below the prior, these adjustments are not statistically significant. 

Panel (b) summarizes the annual totals. The prior estimate for 2024 is 793 ± 128 Tg C yr-1. 
The AllObs inversion reduces this to 698 ± 48 Tg C yr-1, while the Flask-only inversion gives 
an even lower value of 649 ± 39 Tg C yr-1, which is the closest to the IEA/GCB 2024 reference 
level (approximately 660 Tg C yr-1). The tighter uncertainties from both inversions reflect the 
large and dense Δ14CO2 dataset available for 2024. The differences between AllObs and Flask 
indicate that flask samples alone contain sufficient information to strongly constrain annual 
fossil fuel emissions, with the AllObs solution landing between the prior and Flask estimates. 

Panels (c–d) show the same analysis for Germany. The prior gives an annual total of 187 ± 
111 Tg C yr-1, well above the GCB 2024 value of 156.2 Tg C yr-1. The large prior uncertainty 
is due to the system configuration in which the prior total uncertainty is distributed across the 
study domain relative to the observation network density. The inversions reduce both the 
magnitude and the spread. The AllObs solution yields 139 ± 31 Tg C yr-1, and the Flask 
inversion gives 132 ± 21 Tg C yr-1, both close to the GCB emission inventory and much tighter 
than the prior. The monthly behaviour mirrors the EU27 case: winter emissions are lowered 
relative to the prior, spring and summer minima converge across setups, and late-year 
differences remain small. The similarity between the AllObs and Flask results again shows 
that flask Δ14CO2 measurements alone already provide a strong constraint at the national 
scale. A quantitative comparison again shows that the reductions relative to the prior remain 
well within uncertainty bounds: for Germany, monthly differences between the prior and the 
AllObs posterior range from 0.06 to 0.23, with combined 1σ uncertainties of roughly 0.49-1.18 
(|Z| < 0.5). For the Flask posterior, differences range from 0.06 to 0.27 with uncertainties of 
0.49-1.17 (|Z| < 0.6). These adjustments therefore reflect consistent downward corrections 
rather than statistically significant departures from the prior. 

Taken together, the EU27 and Germany inversions show that the 2024 atmospheric 
constraints systematically adjust the prior estimates and produce annual budgets that lie 
closer to independently reported values such as the bottom-up estimates from the Global 
Carbon Budget. The reduction in uncertainty from prior to posterior is substantial for both 
regions, and particularly notable for Germany, where the inversion narrows the annual total to 
a much more stable range. The close agreement between the AllObs and Flask configurations 
across both spatial scales shows that flask Δ14CO2 measurements already provide a solid 
basis for constraining fossil fuel emissions. At the same time, the differences that remain 
between the two setups also highlight the importance of strengthening the Δ14CO2 network. 
Integrated samples contribute valuable temporal coverage, but they depend more strongly on 
atmospheric transport modeling over long periods, which can introduce additional 
uncertainties. Flask measurements, by contrast, offer direct and well-characterized 
observations that are less sensitive to these modelling issues and therefore play a key role in 
constraining the inversion. Increasing the number and geographic coverage of flask Δ14CO2 
samples would enhance the robustness of the fossil fuel signal and improve the consistency 
of regional and national estimates. 
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Figure 30. EU27 and Germany fossil fuel CO2 emissions for 2024 from the prior (CTE-HR) 
and two inversion configurations using the fossil fuel inversion framework: AllObs and Flask-
only. (a-c) Monthly emissions (Tg C day-1) with ±1σ uncertainties. (b-d) Annual totals (Tg C yr-

1). 
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4.2.3 APO 

 

 

Figure 31: Observed (red), simulated (blue) and RHIME-optimised (yellow) APO values for the year 
2024 at CBW (top row) and LIN (bottom row). Error bars and shaded regions denote the 65% confidence 
interval regions in the prior model simulations. Scatter plots show the detrended (background removed) 
optimised-observation comparisons.  

 

NAME-RHIME: Model-data comparison 

Figure 31 shows the 2024 APO derived from atmospheric CO2 and O2 observations at CBW 
and LIN measurement stations, along with the forward simulations produced using EDGAR-
GridFED fossil fuel APO emissions estimates and NEMO-ERSEM ocean APO flux estimates 
in RHIME. 

 

The bias of ~30 per meg between observations and a priori forward simulations is seen, mainly 
due to the extrapolated APO boundary conditions used in this simulation. The variation of the 
APO values in the simulations is similar to the observations for this period, but many of the 
very negative APO excursions seen in the observations have not been captured in the 
simulations. These very large negative excursions (around May-August) are likely due to fossil 
fuel emission events. However, the timing of these events aligns with when the terrestrial 
biosphere is most active. Furthermore, such events are not observed during the winter months 
when higher fossil fuel emissions would be expected. This is the general picture for forward 
simulations across the network.  
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Figure 32: Monthly average Pearson correlation coefficients between the APO observations and a priori 
simulations (blue) and observations and optimised simulations (yellow) split between sites further inland 
(HPB, JFJ, KIT, KRE, OXK) shown on the top panel and sites closer to the coast (CBW, GAT, HTM, 
NOR, STE) shown on the lower panel. Error bars represent the 1σ standard deviation of the correlation 
coefficients calculated across the subset of sites. 

  

The optimised APO values shown in Fig. 31 have an improved agreement with the 
observations at CBW and LIN. Looking at the monthly-averaged Pearson’s correlation 
coefficients between the observations and optimised simulations (and a priori simulations) 
across the network (Fig. 32) we see that the optimised APO values agree better with the 
observations across all months.  

 

We also see a clear seasonal trend in the Pearson's correlation coefficients, with higher values 
during the winter and lower values during the summer. We find that sites further inland (HPB, 
JFJ, KIT, KRE, OXK) have higher Pearson’s correlation coefficient values (better 
correspondence with observations) than sites closer to the coast (CBW, GAT, HTM, NOR, 
STE). It is likely that oceanic APO is influencing sites closer to the coast and that these 
differences arise because oceanic APO is poorly captured in the NEMO-ERSEM ocean model.  

 

The lower Pearson’s correlation coefficients in the summer could suggest the influence of APO 
fluxes from the terrestrial biosphere, which should theoretically be masked out. Rodenbeck et 
al. (2024) found in their APO pseudo-simulations and inversions possible influences of APO 
from the terrestrial biosphere which could be influencing land-based APO fluxes.  
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Figure 33: Slope of linear regressions applied to APO observations and a priori simulations at each site 
in each month of 2024. Markers denote the mean slope value and error bars the 68% variation. 

 

As indicated in Figure 31, a substantial under-estimate in the least-squares regression slope 
is observed for the APO prior simulations. This slope compares the above or below-baseline 
variation in APO in the model versus the observations. If this signal is dominated by fossil fuel 
fluxes, and if model transport was accurate, a slope close to 1 would be expected. Smaller 
slopes indicate an under-estimate in model ffCO2. Across the network, mean slopes between 
the model and the observations on the order of 0.5 are seen (Figure 33). If the observed 
above-baseline observations are dominated by fossil fuel emissions, this would imply that 
fossil fuel CO2 emissions would need to be increased by approximately a factor of 2, which 
would be inconsistent with the difference between prior estimates, and with the results for 
Δ14CO2 at the European scale. Some seasonality in the slope is seen, which could indicate 
changes in ffCO2, or of seasonal changes in ocean influences or biosphere exchange ratios. 

 

 

NAME-RHIME: Emissions estimates for Germany 

Figure 34 shows the APO-inferred RHIME fossil fuel CO2 emissions estimates for Germany in 
2024. Given the very large uncertainty assumed on the model simulations (Figure 31), the 
inversion was found to primarily adjust boundary conditions, with little adjustment to the prior 
fluxes. Further work should examine and revise prior model uncertainties to determine the 
results that would be obtained in a data-driven scenario. As shown in Figure 31, substantial 
model-data residuals were seen in the posterior solution supporting the hypothesis of under-
fitting in the inversion. 
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Figure 34: Preliminary APO-inferred RHIME fossil fuel CO2 emissions estimates for Germany in 2024. 
The red markers show the a posterior emissions estimate (with the shaded region denoting the 68% 
confidence interval) and the black bars the a priori emissions estimate from EDGAR. Note that this 
inversion used a very large uncertainty for the simulated APO (see Figure 31), leading to a highly prior-
constrained solution. As shown in Figure 31, substantial residuals remained in the posterior model-
measurement comparison. Further work is needed to determine appropriate model uncertainties in this 
system, and determine fluxes that would be derived in a more data-driven inversion.  

 

4.3 Conclusions 

Major model development was conducted in tasks 3.3 and 3.4, with the implementation of 
multi-tracer and fossil fuel inversion systems in four inverse modelling frameworks, exploiting 
atmospheric Δ14CO2 and, for two of them, O2 and APO. The parallel analyses of these systems 
are documented above and converge to general conclusions at both regional and global 
scales.  

At regional scale, the systems assimilating 14CO2 data tend to adjust the fossil fuel emissions 
in a limited part of north-western Europe around the core of the Δ14CO2 sampling network, and 
in particular in Germany. The robustness of the corresponding fossil fuel emission estimates 
should be carefully assessed. However, the annual budgets derived for Germany when 
assimilating Δ14CO2 observations are broadly consistent. Furthermore, the inversions tend to 
maintain or increase the seasonal variations compared to the inventories used as prior 
estimates in a consistent way, leading to similar seasonality across the systems, especially in 
Germany. The control of the fossil fuel emissions is stronger in 2024 (the posterior estimate 
being more strongly constrained by the observations, and less impacted by the choice of the 
prior estimate) than during previous years, exploiting the enhanced Δ14CO2 sampling during 
this year. 

The results obtained over Europe when assimilating O2 or APO data appear to be more 
preliminary than those obtained with atmospheric Δ14CO2 observations, with major differences 
between the results obtained with the RHIME and CTE inversions. The individual results show 
that O2 provides additional information on fossil fuel emissions, but further work is needed to 
reconcile the model results. Specific focus of follow up work should be on the added value of 
continuous O2 measurements.  

At a global and multi-decennial scale, the current global background network of atmospheric  
Δ14CO2 and O2 observations brings useful constraints for the estimate of the natural sinks, but 
does not lead to a strong and robust control of the fossil fuel CO2 emissions. The assimilation 
of O2 observations in addition to CO2 observations in the CTE system strengthens the 
partitioning between land and biosphere fluxes. In the CIF-LMDZ inversions, over the past two 
decades, the joint 14CO2-CO2 assimilation is focused on the control of the NEE and of the 14C 
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isotopic signature of the heterotrophic respiration, which are highly uncertain, but does not 
lead to significant corrections to the fossil fuel emissions outside of Europe. The potential to 
control the fossil fuel emissions in Europe depends on the spatial resolution of the transport 
simulations and on the density of the Δ14CO2 network in the continent. However, it is important 
to maintain a background Δ14CO2 and O2 network and large scale analysis with global systems 
to constrain the baseline for the regional inversions. 

 

5 Recommendations for the CO2MVS 

Based on the above conclusions, and lessons learned during Tasks 3.3 and 3.4 the following 
recommendations regarding the use of Δ14CO2 and O2 data for CO2MVS in the CAMS/IFS 
system are suggested: 

1. The ongoing development of 14CO2 and O2 in the IFS should be continued and further 
evaluated as a prerequisite to inverse simulations. Forward simulations have been 
shown to provide useful diagnostics of model fluxes, even without inverse modelling 
studies being performed. 

2. Given the relative consistency of inverse estimates of fossil fuel CO2 fluxes in parts of 
north-western Europe, particularly Germany, during 2024, the findings of this report 
support the added value of atmospheric Δ14CO2  as a tracer of fossil fuel emissions, 
compared to atmospheric CO2 mole fraction observations alone. Therefore, the 
relatively high-frequency sampling established during CORSO should be continued. 
Furthermore, to provide ffCO2 constraints on countries outside of Germany, the 
network should be expanded across Europe. 

3. The current global background monitoring system did not provide a strong constraint 
on global fossil fuel CO2 emissions. However, global inversions will be important to 
constrain boundary conditions for future regional modelling studies. Therefore, 
maintenance of the background network should be encouraged. Enhanced global 
monitoring may allow for improved understanding of global fossil fluxes in the future. 

4. Inversions of Δ14CO2 are influenced by uncertainties in heterotrophic respiration fluxes 
and their 14C isotopic signatures, particularly at the global scale. Further work is 
needed to constrain these fluxes using observations and models. 

5. Further work is needed to establish the use of simultaneous atmospheric 
measurements of CO2 and O2 as a tracer for fossil fuel CO2 emissions. In particular, 
the role of oceanic fluxes should be investigated, and potential errors or variations in 
assumed biosphere/atmosphere exchange ratios. Furthermore, the added value of 
high-frequency O2 observations has not yet been established beyond forward model 
comparisons. Further research on this subject is expected through the Horizon Europe 
PARIS project in 2026. 
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