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1 Executive Summary 

This deliverable reports on the work performed in Task 2.4 of the CORSO project, where 
various inversion approaches were used to estimate CO2 emissions at a range of different 
spatial scales.  

First, this work reports on the implementation and further development of a posterior flux 
assimilation methodology, first proposed by Bousserez (2019), which enables the assimilation 
of external inversion products as observations in the Integrated Forecasting System (IFS). 
The assimilation method is first tested in a range of Observing System Simulation Experiments 
(OSSEs) to investigate the impact of ensemble size and a mis-represented prior uncertainty 
on the posterior uncertainty obtained by applying this method. From these OSSE experiments, 
we conclude that the posterior uncertainty is underestimated in small ensembles, and that an 
adaptive tuning procedure is required to correct for potential misrepresentations in the prior 
uncertainty.  

We then apply this method to assimilate hotspot emission estimates into a posterior emission 
ensemble obtained from joint IFS Ensemble Data Assimilation and emission inversion 
experiments. In this case, hotspot NOx emissions from selected power plants in the United 
States and Europe are converted to CO2 emissions using a prior emission ratio and 
subsequently assimilated into an IFS emission ensemble. The required observational 
information (source rate, source rate uncertainty and hotspot location) is taken from CORSO 
Deliverable D2.2 (Kuhlmann et al., 2025). The assimilation results in an improved agreement 
with the assimilated observations and agrees reasonably well with independent emissions 
observations from Continuous Emissions Monitoring System (CEMS) for US power plants.   

Second, this work develops a regional NOx inversion framework that uses satellite NO2 
observations to constrain daily anthropogenic NOx emissions over Europe for 2021. The 
GEOS-Chem model with a lightweight offline representation of NOx chemistry is coupled to an 
Ensemble Kalman Filter (EnKF) system and constrained using high-quality TROPOMI NO2 
data. Emission uncertainties, spatial error correlations, and observation errors are explicitly 
represented, enabling robust and spatially resolved updates of NOx fluxes across the 
European domain. 

The optimised NOx emissions are then used to directly update fossil-fuel CO2 emissions 
through prescribed, sector-specific NOx:CO2 emission ratios. The assimilation significantly 
improves agreement between modelled and observed NO2 and leads to a large reduction in 
uncertainty in European CO2 emissions. The strongest corrections occur in southern and 
southeastern Europe, while northern and central regions show higher prior–posterior 
consistency. The resulting emissions exhibit enhanced wintertime fluxes and clear regional 
seasonal adjustments, demonstrating the potential of satellite NO2 to provide powerful indirect 
constraints on anthropogenic CO2 emissions. 

This work has contributed to the development of the global CO2MVS with a first 
implementation of posterior flux assimilation described in the CO2MVS prototype methodology 
and by further developing a regional inversion system that could be used for regional 
benchmarking of the global emissions.  

 

 

 

 



CORSO  
 

D2.7 Multi-scale global IFS inversion outputs (2021) with assimilated posterior emissions from hot-spots
  3 

 

Table of Contents 

 

1 Executive Summary ....................................................................................................... 2 

2 Introduction .................................................................................................................... 4 

2.1 Background ........................................................................................................... 4 

2.2 Scope of this deliverable ........................................................................................ 5 

2.2.1 Objectives of this deliverable ............................................................................. 5 

2.2.2 Work performed in this deliverable ..................................................................... 5 

2.2.3 Deviations and counter measures ...................................................................... 5 

2.3 Project partners: .................................................................................................... 5 

3 Posterior flux assimilation methodology ......................................................................... 7 

3.1 Input data .............................................................................................................. 7 

3.1.1 Hotspot emission estimates derived from TROPOMI ......................................... 7 

3.1.2 IFS ensemble emission inversion experiments .................................................. 8 

3.1.3 Validation data: United States power plant-reported emissions .......................... 9 

3.2 Posterior flux assimilation algorithm ....................................................................... 9 

3.3 Algorithm validation Observing System Simulation Experiments ......................... 11 

3.3.1 Posterior uncertainty as a function of ensemble size ....................................... 11 

3.3.2 Impact of mis-prescribed prior uncertainties ..................................................... 12 

3.4 EnKF inversion experiments ................................................................................ 13 

3.4.1 GEOS-Chem offline NOx chemistry model ....................................................... 13 

3.4.2 TROPOMI observations ................................................................................... 15 

3.4.3 Ensemble Kalman Filter (EnKF) procedure ...................................................... 15 

4 Results ......................................................................................................................... 17 

4.1 Impact of hotspot assimilation on power plant CO2 emissions ............................. 17 

4.2 EnKF assimilation results for Europe 2021 .......................................................... 20 

4.3 Intercomparison between IFS hotspot-assimilated and GEOS-Chem posterior CO2 
emissions for European power plants .............................................................................. 23 

5 Conclusion ................................................................................................................... 24 

6 References .................................................................................................................. 26 

 

 

  



CORSO  
 

D2.7 Multi-scale global IFS inversion outputs (2021) with assimilated posterior emissions from hot-spots
  4 

2 Introduction 

2.1 Background 

To enable the European Union (EU) to move towards a low-carbon economy and implement 
its commitments under the Paris Agreement, a binding target was set to cut emissions in the 
EU by at least 40% below 1990 levels by 2030. European Commission (EC) President von 
der Leyen committed to deepen this target to at least 55% reduction by 2030. This was further 
consolidated with the release of the Commission's European Green Deal on the 11th of 
December 2019, setting the targets for the European environment, economy, and society to 
reach zero net emissions of greenhouse gases in 2050, outlining all needed technological and 
societal transformations that are aiming at combining prosperity and sustainability. To support 
EU countries in achieving the targets, the EU and European Commission (EC) recognised the 
need for an objective way to monitor anthropogenic CO2 emissions and their evolution over 
time.  

 

Such a monitoring capacity will deliver consistent and reliable information to support informed 
policy- and decision-making processes, both at national and European level. To maintain 
independence in this domain, it is seen as critical that the EU establishes an observation-
based operational anthropogenic CO2 emissions Monitoring and Verification Support (MVS) 
(CO2MVS) capacity as part of its Copernicus Earth Observation programme.  

 

The CORSO research and innovation project will build on and complement the work of 
previous projects such as CHE (the CO2 Human Emissions), and CoCO2 (Copernicus CO2 
service) projects, both led by ECMWF.  These projects have already started the ramping-up 
of the CO2MVS prototype systems, so it can be implemented within the Copernicus 
Atmosphere Monitoring Service (CAMS) with the aim to be operational by 2026. The CORSO 
project will further support establishing the new CO2MVS addressing specific research & 
development questions. 

 

The main objectives of CORSO are to deliver further research activities and outcomes with a 
focus on the use of supplementary observations, i.e., of co-emitted species as well as the use 
of auxiliary observations to better separate fossil fuel emissions from the other sources of 
atmospheric CO2. CORSO will deliver improved estimates of emission factors/ratios and their 
uncertainties as well as the capabilities at global and local scale to optimally use observations 
of co-emitted species to better estimate anthropogenic CO2 emissions. CORSO will also 
provide clear recommendations to CAMS, ICOS, and WMO about the potential added-value 
of high-temporal resolution 14CO2 and APO observations as tracers for anthropogenic 
emissions in both global and regional scale inversions and develop coupled land-atmosphere 
data assimilation in the global CO2MVS system constraining carbon cycle variables with 
satellite observations of soil moisture, LAI, SIF, and Biomass. Finally, CORSO will provide 
specific recommendations for the topics above for the operational implementation of the 
CO2MVS within the Copernicus programme. 
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2.2 Scope of this deliverable 

2.2.1 Objectives of this deliverable 

In this deliverable, we: 

1. Introduce and test a posterior flux assimilation methodology to assimilate hotspot 

emission estimates from native-resolution satellite observations into a posterior 

emission ensemble.  

2. Apply the posterior flux assimilation algorithm to derive updates to power plant CO2 

emissions in the United States and Europe and compare these estimates to power 

plant-reported data and an independent inversion framework. 

3. Incorporate the parametrised NOx chemistry scheme into GEOS-Chem to apply 

Ensemble Kalman Filter (EnKF) assimilation of to update European prior fluxes for 

2021.  

 

2.2.2 Work performed in this deliverable 

1. Implemented a posterior flux assimilation algorithm to correct posterior IFS CO2 

emissions based on hotspot emissions derived from TROPOMI NO2 observations. 

2. Testing of the posterior flux assimilation in a set of Observing System Simulation 

Experiments (OSSEs). 

3. Application of the posterior flux assimilation algorithm for June and December 2021 for 

selected power plants in the United States and Europe.  

4. Implemented EnKF assimilation of TROPOMI NO2 in GEOS-Chem to constrain 

European NOx emissions for 2021. 

5. Derived updated CO2 combustion fluxes from the EnKF posterior NOx emissions using 

prescribed NOx:CO2 ratios. 

6. Quantified improvements in model–observation agreement and CO2 emission 

uncertainty reduction. 

7. Comparison of posterior emissions between the hotspot assimilation algorithm and 

GEOS-Chem for 5 power plants in Europe.  

 

2.2.3 Deviations and counter measures 

No deviations 

 

2.3 Project partners: 
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3 Posterior flux assimilation methodology 

3.1 Input data 

3.1.1 Hotspot emission estimates derived from TROPOMI 

We assimilate hotspot emission estimates derived in CORSO Deliverable D2.2 (Kuhlmann et 
al. 2025), which contains daily NOx emissions for the power plants in the top 100 list of 
strongest emitting point sources in the CORSO point source database (Guevara et al. 2024), 
considering only those power plants sufficiently far from other emission sources. In this 
analysis, we focus on the United States and Europe, since power plants in these regions have 
Continuous Emissions Monitoring Systems (CEMS) for monitoring compliance with air quality 
regulations. These data are used for validation, and are further described in Section 3.1.3. In 
total, 17 power plants in the United States and Europe fulfil these criteria. Figure 1 displays 
the yearly average NOx emissions for these power plants.  

The hotspot emission estimates are derived from NO2 observations from the TROPOspheric 
Monitoring Instrument (TROPOMI) onboard Sentinel-5P (Veefkind et al. 2012).The NOx 
emissions were estimated using NO2 observations from individual TROPOMI overpasses 
using the cross-sectional flux method, which estimates emissions by integrating the NO2 mass 
through cross-sections of an emission plume, and multiplying by the wind speed taken from 
ERA5 (Hersbach et al. 2020) to obtain an emission rate. This method accounts for NO2-to-
NOx conversion and NOx decay. More details can be found in Kuhlmann et al. (2025).  

Prior to assimilation, we convert the NOx hotspot emission estimates to CO2 by applying a 
CO2:NOx emission ratio (ER), derived from the IFS prior (CAMS-GLOB-ANT, version 6.2; 
Soulie et al. 2024). The CO2 emission uncertainty is derived by applying error propagation 
using the hotspot NOx emission uncertainty and an assumed ER uncertainty. We use a relative 
ER uncertainty of 42% derived from satellite observations (Kuhlmann et al. 2021, Liu et al. 
2020). An example of this conversion is shown in Figure 2. We note that this uncertainty 
estimate is likely to be conservative given the uncertainties involved in estimating this ratio 
from satellite observations (e.g. due to the retrieval algorithm and atmospheric chemistry). On 
the other hand, since CO2 and NOx emissions are correlated, part of the uncertainty in the 
prior emission ratio cancels, which is not accounted for in this satellite-derived ER uncertainty 
estimate. 

 

Figure 1. Locations of the energy sector emission hotspots in the United States (left panel) and Europe 
(right panel) used for assimilation in this study. The circle colour reflects the annual average NOx 
emissions derived based on TROPOMI observations.  
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Figure 2. NOx emissions (upper panel), CO2 emissions (centre panel) and the CO2:NOx emission ratio 
(lower panel) for the Intermountain power plant in Utah, USA, from three different data sets: the United 
States Environmental Protection Agency’s Continuous Emission Monitoring System (EPA CEMS, blue), 
the CAMS-GLOB-ANT emission inventory v6.2 (orange) and the TROPOMI-derived NOx emissions 
derived using the cross-sectional flux method (green). Hotspot CO2 emissions were derived from 
hotspot NOx emissions as described in Section 3.1.1. 

 

3.1.2 IFS ensemble emission inversion experiments 

3.1.2.1 IFS forward model 

The Integrated Forecasting System (IFS) is used operationally at ECMWF for Numerical 
Weather Prediction (NWP) and for monitoring and forecasting air pollution and greenhouse 
gases as part of the Copernicus Atmosphere Monitoring Service (CAMS) (Flemming et al., 
2015, Agustí-Panareda et al., 2022). For this deliverable, we apply the IFS greenhouse gas 
configuration. The model has 137 hybrid sigma-pressure levels from the surface to 0.1 hPa 
with a vertical resolution that varies with (geometric) altitude, peaking in the planetary 
boundary layer. Tracer advection is calculated with a semi-Lagrangian scheme (Diamantakis 
and Magnusson, 2016), and a mass fixer is subsequently applied to ensure mass conservation 
(Agustí-Panareda et al., 2017). The transport model additionally includes parameterizations 
of turbulent mixing (Sandu et al., 2013) and convection (Bechtold et al., 2014). The forward 
model is run on a cubic octahedral Tco399 grid with an approximate horizontal resolution of 25 
km, using a time step of 15 minutes. 

 

3.1.2.2 IFS Ensemble Data Assimilation + inversion framework 

The posterior flux assimilation method relies on an ensemble of emissions, which in this case 
is derived from Ensemble Data Assimilation (EDA) inversion experiment with the Integrated 
Forecasting System. EDA has been used operationally at ECMWF since 2010, and its 
applicability for greenhouse gas state optimization has recently been investigated. The IFS 
inversion framework is based on the 4D-Var data assimilation system implemented in IFS 
(Courtier et al. 1994, Rabier et al. 2000). In an emission inversion context, the 4D-Var state 
vector is extended with a 2D multiplicative emission scaling factor such that IFS jointly 
optimizes meteorology, the atmospheric state and emissions, using the following cost function: 
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 𝐽(𝐱, 𝐩) = (𝐱 − 𝐱𝐛)𝑻𝐁𝐱
−𝟏(𝐱 − 𝐱𝐛) + (𝐩 − 𝐩𝐛)𝑻𝐁𝐩

−𝟏(𝐩 − 𝐩𝐛)

+ (𝐲 − ℎ(𝐱, 𝐩))
𝑻

𝑹−𝟏(𝐲 − ℎ(𝐱, 𝐩)). 
(1) 

The cost function is minimized with respect to state vectors 𝐱 (meteorological variables and 
atmospheric concentrations) and 𝐩 (emission scaling factors). 𝐁𝒙 and 𝐁𝐩 represent the 

background and prior error covariance matrices, respectively, and 𝐑 is the observation error 
covariance matrix. A previous version of the IFS inversion framework has been described in 
McNorton et al. (2022).  

The IFS inversion system currently optimizes total (anthropogenic) surface fluxes using a 
single 2D scaling factor field per species. The posterior emissions are optimized using three 
inner-loop minimizations at different resolutions (~125 km, ~100 km and ~80 km) within a 12-
hour assimilation window. Posterior scaling factors from these inversions are applied to the 
prior emissions on a grid of ~25 km resolution. We use an ensemble with one control member 
and ten perturbed members, initialized with a uniform prior uncertainty of 30% and a spatially 
uniform correlation length scale of 100 km. The current inversion configuration assumes no 
time correlation between emission adjustments in consecutive assimilation windows, which 
may lead to spurious day-to-day variability in posterior emissions. The prior error covariance 
matrix setup will be further tested as part of the CO2MVS ramp-up in the coming period.   

One application of the EDA is to provide a flow-dependent estimate of the background error 
covariance matrix 𝐁𝒙. The EDA generates spread by applying random perturbations to the 
assimilated observations, the model physics during the forward model integration, and sea 
surface temperature. The emissions in the perturbed EDA ensemble members were 

generated by multiplying the square root 𝐋 of the prior error covariance matrix (𝐁𝐩 = 𝐋𝐩𝐋𝐩
T) to 

a two-dimensional field with random values (𝐯): 

 𝐩𝐛
′ = 𝐋𝐩𝐯. (2) 

This ensures that the emission perturbations are consistent with the prior error specification 
for the emission scaling factors in each assimilation window.  

 

3.1.3 Validation data: United States power plant-reported emissions  

We use Continuous Emission Monitoring System (CEMS) data from the United States 
Environmental Protection Agency’s Clean Air Market Program Data portal (EPA, 2025). In this 
dataset, direct stack measurements of NOx, CO2 (among other pollutants) are reported for 
power plants in the United States. This type of data has been previously used in inverse 
modelling of CO2 emissions based on satellite NO2 observations (Liu et al., 2020). CEMS data 
is available at high temporal resolution (hourly or daily) and are thus well suited to evaluate 
the impact of hotspot emission assimilation on temporal emission variability. We use daily 
aggregated CEMS data as an independent validation of the assimilated hotspot emission 
product. An example daily time series of EPA CEMS data is shown in Figure 2. 

 

3.2 Posterior flux assimilation algorithm 

Following Bousserez (2019), we apply a Kalman filter update algorithm to assimilate 
TROPOMI-derived posterior emissions from hotspots (𝒙𝒓) in prior ensemble member 𝑚 (𝒛𝒃,𝒎) 

to yield the updated ensemble member 𝒛𝒂,𝒎: 

 
𝒛𝒂,𝒎 = 𝒛𝒃,𝒎 +

1

𝑁−1
𝒁𝒃(𝑨𝒁𝒃)𝑇 (

1

𝑁−1
𝑨𝒁𝒃(𝑨𝒁𝒃)𝑇 + 𝑬)

−1
(𝒙𝒓 − 𝑨𝒛𝒃,𝒎), (3) 

where 𝑁 is the ensemble size, 𝒁𝒃 is the prior ensemble of emission anomalies with respect to 
the control member 𝒛𝒃,𝟎, 𝑨 is the averaging kernel mapping the ensemble (member) to 
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observation space, and 𝑬 is a diagonal matrix containing hotspot emission uncertainties 

(expressed as 𝜎2). 

The prior ensemble (derived from the IFS emission inversion algorithm) may contain long-
distance correlations, which can be caused by the small ensemble size. This results in 
spurious posterior increments (the right-hand term in Equation (3)) far from the location of the 
hotspot after applying the above equation. To localize these emission increments, we apply 
Gaspari-Cohn localization (Gaspari and Cohn, 1999) to the posterior emission update. 
Sensitivity tests with a varying localization radius yields an optimum value of 10 km.  

The IFS ensemble spread in 𝒁𝒃 is not necessarily representative of the true prior error 
standard deviation. This could be due to a misrepresentation in the magnitude or temporal 
variability of the prior emission. In extreme cases, this can result in first-guess departures of 
up to several magnitude in extreme cases. To ensure a representative prior ensemble spread 

required for assimilating hotspot fluxes, we apply an objective tuning method based on a 𝜒2 
diagnostic. This method relies on evaluating the cost function of the assimilation algorithm, 
which has the following property: 

 𝔼[𝐽(𝒛𝒂,𝒎)] = 𝑝 (4) 

 
where 𝑝 is the number of observations (1 in this case), and 𝐽(𝒛𝒂,𝒎) is the cost function 

evaluated for the posterior emission estimate. After applying a Gaspari-Cohn localization, 
which filters the sampling noise by restricting the emission increments around the assimilated 
hotspot, the control vector space can be reduced to the local subspace with non-zero posterior 
emission increments (𝒛𝒂

′ ). This enables to reduce the dimension of the problem and explicitly 

invert 𝐁. We write the cost function in the reduced space as follows: 

 
𝐽[𝒛𝒂′] =

1

2
(𝒛𝒂,𝒎

′ − 𝒛𝒃,𝒎
′ )

𝑇
𝑩′−1(𝒛𝒂,𝒎

′ − 𝒛𝒃,𝒎
′ ) +

1

2
(𝒙𝒓 − 𝑨𝒛𝒂,𝒎)

𝑇
𝑬−1(𝒙𝒓 − 𝑨𝒛𝒂,𝒎) (5) 

 
where 𝑧𝑏

′  is the prior ensemble member 𝑚 in the subspace with non-zero emission increments, 

and  
 

 𝑩′ = 𝒁𝒃
′ (𝒁𝒃

′ )𝑇 = 𝑺𝒁𝒃𝒁𝒃
𝑻𝑺𝑻 (6) 

 
is the prior error covariance matrix, restricted to this subspace by applying a selection matrix 
𝑺. The initial guess for the relative error 𝜎𝑏 is defined as: 

 

 𝜎𝑏 =
|𝑨𝒛𝒃,𝒎−𝒙𝒓|

|𝑨𝒛𝒃,𝒎|
, (7) 

 
and this value is used to update 𝑩′. A fixed-point algorithm can be used to find the solution to 

Equation (4), i.e. 𝐽[𝒛𝒂,𝒎] ≈ 𝑛𝑜𝑏𝑠 (see, e.g., Chapnik et al., 2006).  

We note that the iterative adaptive tuning of 𝜎𝑏 based on minimization of 𝐽 is not yet 
implemented. As a preliminary test, we currently use the initial guess for 𝜎𝑏 (Equation (7)) in 
the assimilation procedure. This does not necessarily result in reaching 𝐽[𝒛𝒂,𝒎] ≈ 𝑛𝑜𝑏𝑠. As a 

result, the current version of the algorithm does not always produce optimal results in terms 
of posterior uncertainty reduction. We evaluate the performance of the current assimilation 
algorithm in Section 4.1.  
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Figure 3. Summary statistics of the first OSSE experiment. Left panel: relative difference between the 
ensemble derived and analytical posterior (calculated as (𝑷𝒂

𝒆 − 𝑷𝒂
𝒕 )/𝑷𝒂

𝒕 ) as a function of ensemble size. 
Points and error bar refer to the average and ±1σ range, respectively, calculated at the locations of the 
50 assimilated observations. Right panel: spatial error correlation in the posterior error covariance 
matrix, displayed as the average (points) and ±1σ range derived from a 1000-member sample of off-
diagonal elements in 𝑷𝒂

𝒆 . 

 

3.3 Algorithm validation Observing System Simulation Experiments 

3.3.1 Posterior uncertainty as a function of ensemble size  

We validate the implementation of this algorithm by evaluating the posterior error reduction in 
Observation System Simulation Experiments (OSSEs), and by studying its ability to recover 
the theoretical posterior error for different ensemble sizes. The theoretical posterior error 
covariance matrix (𝑷𝒂

𝒕 ) can be approximated as: 

 𝑷𝒂
𝒕 = (𝑩−𝟏 + 𝑨𝑻𝑬−𝟏𝑨)

−𝟏
, (8) 

where 𝑩 is the prior error covariance matrix, and the other terms as defined for Equation (3). 
An estimate of the posterior error can also be derived from the posterior ensemble: 

 𝑷𝒂
𝒆 =

1

𝑁−1
𝒁𝒂𝒁𝒂

𝑻, (9) 

where 𝒁𝒂 is the posterior ensemble of anomalies with respect to the ensemble mean. Due to 

sampling noise, 𝑷𝒂
𝒆  and 𝑷𝒂

𝒕  may differ especially for small ensembles. With this OSSE setup, 
we study the properties of the posterior error covariance approximation as a function of 
ensemble size. 

For this experiment, we construct synthetic ensembles of uncorrelated Gaussian noise with 
mean 100 (unitless) and a prior error standard deviation of 20%, using a coarse spatial 
resolution (1000 grid cells). Synthetic emission observations (𝑛𝑜𝑏𝑠  =  50) are sampled from 
the control member and perturbed with an observation uncertainty of 40%. These observations 
are assimilated in the synthetic ensemble using Equation (3).  

Figure 3 shows the dependence of the posterior uncertainty and spatial error correlation as a 
function of ensemble size. The ensemble-derived posterior uncertainty, shown in Figure 3 (left 
panel) is underestimated for small ensembles, by up to 40% for a 10-member ensemble. This 
underestimation is reduced as the ensemble size increases, following theoretical 
expectations. These ensembles agree within 1 standard deviation for ensembles of size 100 
or larger. To avoid overfitting of the observations, a sufficiently large ensemble size must be 
chosen. Spatial error correlation is present in the posterior error covariance matrix due to 
sampling noise. On average, the spatial error correlation is near-zero for all tested ensemble 
sizes (Figure 3, right panel). Nonetheless, substantial off-diagonal noise is present in 𝑷𝒂

𝒆  for 
small ensembles, which decreases towards zero for the larger ensemble sizes tested in this 
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study. Based on this OSSE analysis, we conclude that the implementation of the Kalman filter 
assimilation algorithm introduced behaves according to theoretical expectations, and that 
sufficiently large ensembles are required to minimize underestimation of the posterior 
uncertainty and spurious spatial error correlation.  

3.3.2 Impact of mis-prescribed prior uncertainties 

In a second OSSE experiment, we test the ability of the posterior flux update algorithm without 
adaptive tuning of 𝜎𝑏 to correct for a wrongly specified prior uncertainty. For this OSSE, we 
generate 50 synthetic observations from a 100-member prior ensemble with a correctly 
specified, or “true”, prior uncertainty of 30%. These observations are perturbed using an 
observation uncertainty of 30%. In a second ensemble, referred to as the “false” ensemble, 
the prior uncertainty (expressed as a relative standard deviation) is incorrectly specified at 
values ranging from 0.1-1 with increments of 0.1. The same synthetic observations (sampled 
from the “true” prior ensemble) are assimilated into this ensemble. The results are displayed 
as a function of the “false” prior uncertainty in Figure 4. 

In this OSSE experiment, the “true” posterior uncertainty is reduced compared to the prior as 
expected. The posterior uncertainty is underestimated when starting from an underestimated 
prior uncertainty. When the “false” prior uncertainty is larger than the “true” prior uncertainty, 
the “false” posterior uncertainty is corrected downward, and seems to plateau as the “false” 
prior uncertainty increases. We conclude that an adaptive tuning of 𝜎𝑏 is required prior to 
assimilation in order to recover the “true” posterior uncertainty when starting from a wrongly 
specified prior uncertainty.    

 

Figure 4. Relative prior and posterior error standard deviation in the OSSE experiment to investigate 
the impact of wrongly specified prior uncertainties, shown as a function of the “false” prior uncertainty.  
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3.4 EnKF inversion experiments 

3.4.1 GEOS-Chem offline NOx chemistry model  

We use version 14.4.3 of the GEOS-Chem atmospheric chemistry transport model (Bey et al., 
2001). Our simulations use the nested-grid carbon configuration, into which we incorporate 
NOx species by implementing a lightweight offline treatment of NOx chemistry. The chemistry 
rates are calculated using offline chemistry fields saved from a full chemistry simulation and 
works on the principle that the instantaneous effective lifetime of NOx across space and time 
is assumed to be unchanged under emission perturbations (Schooling et al. 2025).   

The nested model is centred over mainland Europe (32.75 to 61.25° N, -15 to 40° E) with 47 
vertical levels, and a horizontal spatial resolution of 0.25°x0.3125°. Lateral boundary 
conditions to the European domain were created from a global GEOS-Chem model run at 
4×5°, with three-hourly output fields. The nested model was run with a 5-minute transport 
timestep and 10-minute chemistry timestep.  

The model is driven by offline meteorological fields from the GEOS-FP dataset provided by 

NASA’s Global Modelling and Assimilation Office (GMAO), with a native resolution of 

0.25°x0.3125°, 72 vertical levels, and 3-hourly temporal resolution. The prior fluxes for 

combustion emissions of NOx and CO2 are taken from the CAMS_REG v8.1 emissions 

inventory (Hohenberger et al., 2025, Figure 5) at 0.1x0.05° resolution. Temporal variability in 

emissions (monthly, daily, hourly) are represented using sector-based temporal scaling factors 

(Figure 5b). The combustion sectors included are public power, industry, road transport, ships, 

aviation, off-road machinery, and other combustion sources. The CO2:NOx emission ratio is 

prescribed for each of these combustion sector, allowing the combustion-based NOx fluxes to 

be converted into ffCO2 flux estimates. Non combustion sources, including solvents, waste, 

agriculture, and fugitive emissions, are prescribed as fixed within the data assimilation. In 

addition, the NOx emissions from soil, lightning, and biomass burning are parameterised within 

GEOS-Chem (Vinken et al. 2014, Gressent et al. 2016).  
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(a) 

 
(b) 

Figure 5. (a) The 2021 CAMS-REG v8.1 emissions data for CO2, NOx, and their respective ratio 
across the main combustion sectors. (b) The temporal profiles applied to the Public Power, Industry, 
Other Stationary Combustion, and Road Transport sectors.   
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3.4.2 TROPOMI observations  

We used satellite observations of NO2 from the TROPOspheric Monitoring Instrument 
(TROPOMI) to constrain anthropogenic NOx emissions over Europe. We use v2.4.0 data for 
the full year 2021. TROPOMI provides daily global coverage with a local equatorial overpass 
time of 13:30, a 2,600 km swath, and 7x7 km2 nadir resolution. We select only high-quality 
retrievals with a quality assurance value, qa>0.75. The data was resampled onto the GEOS-
Chem 0.25°x0.3125° grid, and the satellite averaging kernels were interpolated onto the 47 
vertical levels of the model to compute vertically sensitive model column densities. 

In our European region following filtering with quality assurance, the daily and monthly 
coverage of observations for the year 2021 are shown in Figure 6. The coverage has clear 
seasonal dependence, with mean daily coverage of around 45% in winter (DJF) and 70% in 
summer (JJA). 

 

Figure 6. The daily and monthly proportional coverage of TROPOMI NO2 over GEOS-Chem pixels in 
the European domain for 2021. Coverage is defined as the proportion of GEOS-Chem grid cells 
across the European domain that receive at least one valid TROPOMI observation within the 
specified time period. Thus, 100% daily coverage means every grid cell was observed at least once 
during the period (day or month). 

 

3.4.3 Ensemble Kalman Filter (EnKF) procedure  

We use an existing EnKF framework that has been widely used to estimate CO2 and CH4 
fluxes from atmospheric observations (Feng et al. 2009, 2017). In this implementation, we 
assimilate satellite-based NO2 column observations (yobs), to update the prior flux state vector 
(xf) and produce the posteriori state vector (xa) using the standard Kalman filter formulation:  

𝑥𝑎 =  𝑥𝑓   +  𝐾[𝑦𝑜𝑏𝑠 − 𝐻𝑥𝑓],               (10) 

where H is the observation operator that maps the state vector to observation space, and K is 
the Kalman gain matrix. 

In the ensemble approach, we introduced an ensemble of N=100 perturbation states. The 
ensemble prior error covariance matrix (Σ) was constructed using the CAMS-REG v8.1 
emission uncertainties (σn, σc) together with the cross-species error correlation product (r): 
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                                           .             (11) 

We generated an ensemble of NOx emission scaling's by sampling from a bivariate normal 
distribution, N(0, Σ) at each grid cell. This produces spatially resolved perturbations that 
preserve both the magnitude of uncertainties and the correlation between NOx and CO₂ errors 
(Figure 7).  

 

Figure 7. NOx and CO2 uncertainties (σn, σc) from CAMS-REG v8.1 emissions, the cross-species 
error correlation product (r), taken from the global CORSO product, and the prior ensemble errors 
calculated from the prior error covariance matrix (Σ). 

The forward-modelled NO2 columns from each ensemble member (denoted H(xf)) are 
compared to satellite retrievals to compute the innovation vector d = yobs - H(xf). We apply a 
spatial mask to exclude edge regions and measurement outliers. The Kalman gain matrix is 
then estimated using the ensemble approximation (Feng et al. 2009, 2017): 

𝐾  ≈ Δ𝑋𝑓 (Δ𝑌𝑓 )
𝑇

[Δ𝑌 𝑓 (Δ𝑌𝑓 )
𝑇

+  𝑅]
−1

,               (12) 

where ΔYf represents the ensemble of deviations in the observation space, and R is the 
observation error covariance matrix. To reduce the impact of spurious long-range correlations, 
we applied localisation to the Kalman gain. We compute the distance between each grid cell 
and each valid observation, and apply a Gaussian tapering function exp(-dij/L) with a 
correlation length scale L = 200 km. This localisation is applied multiplicatively to the Kalman 
gain, element-wise.  

In our setup, R is defined as a diagonal matrix that incorporates satellite retrieval uncertainty 
using the TROPOMI precision values, and includes a fixed model error of 1×1013 molecules 
(molec)/cm2, corresponding to the average reconstruction error of NO2 columns derived from 
scaled offline chemistry (Schooling et al. 2025). Additionally, we applied an adaptive inflation 
scheme that increased the observation error covariance by a factor of 10 whenever the 
observed values significantly differ from the model predictions (|d|>2×1016 molec/cm2). 
Furthermore, an additional constraint was applied to ensure the posterior flux estimates are 
always greater than zero. 

To quantify the change in model agreement with observations as the fluxes are updated to 
posterior we assess the coefficient of determination (R2), the mean bias, mean absolute error 
(MAE), and the error variance reduction (EVR), defined as: 

𝐸𝑉𝑅  =  100 𝑥  (1 −  
𝜎𝑝𝑜𝑠𝑡

2

𝜎𝑝𝑟𝑖𝑜𝑟
2 ),             (13) 

where σ2
prior, σ

2
post are the variances of the prior and posterior model errors, respectively. Since 

NOx is short-lived observations are generally insensitive to emission changes from previous 
days so we use a data assimilation window of one day. Due to the non-linearity of NOx 
emissions with atmospheric NO2 observations, it is possible to maximise error reduction by 
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repeating the ensemble runs multiple times in an iterative procedure. Up to 4 iterations were 
performed, however the procedure was broken early if the percentage reduction in mean 
absolute error falls below 1, suggesting a plateau in model improvement.  

 

4 Results 

4.1 Impact of hotspot assimilation on power plant CO2 emissions 

The impact of the posterior flux hotspot assimilation procedure is shown for the Intermountain 
(Figure 8) and Thomas Hill (Figure 9) power plants in the United States, where prior and 
posterior fluxes are compared against power plant-reported emissions from CEMS data. For 
the Intermountain power plant, the satellite-derived fluxes are within one standard deviation of 
the prior ensemble mean for most of the days in June and December 2021, resulting in a minor 
posterior emission update that agrees with CEMS data. A temporary peak in emissions is seen 
on June 15-19, when CEMS emissions are outside the prior uncertainty range. This peak is 
also seen in the satellite-derived emissions, which are 2-4× higher than the prior. The posterior 
emissions are corrected upward by up to a factor 2 on these days, resulting in a close 
agreement with the reported emissions for the Intermountain power plant during this episode. 

For the Thomas Hill Energy Center (Figure 9), reported emissions are larger than the IFS prior 
for both analysed months. In June, satellite-derived emissions suggest lower emissions within 
the prior uncertainty range. As a result, the posterior emissions are not substantially different 
from the prior during this month. During December, there is a better agreement between the 
satellite-derived and power plant-reported emissions. As a result, the posterior emissions are 
corrected upward on most days, which results in a better agreement with reported emissions. 
On individual days (e.g., December 3, 8 and 13), the posterior mean is outside the prior 
uncertainty range, demonstrating that the prior uncertainty tuning can correct for 
misrepresented prior emissions or its temporal variability. 

Overall, 292 individual hotspot emission estimates were assimilated. For the majority of 
assimilated hotspot emissions (86%), this resulted in an improved agreement with the 
assimilated flux. In 52% of the cases, this resulted in reduction of the posterior uncertainty. 
This due to the low number of posterior fluxes and due to noise resulting from the low IFS 
ensemble size (Figure 3). The implementation of iterative tuning of 𝜎𝑏 based on cost function 
evaluation (see Section 3.2) is expected to increase the rate of posterior error reduction. 
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Figure 8. As Figure 9, but for the Thomas Hill Energy Center power plant.  

Figure 9. Impact of hotspot assimilation on CO2 emissions for the Intermountain power plant for June 
(upper panels) and December (lower panels) 2021, displayed as a time series (left column) and monthly 
average (right column). Prior and posterior emissions are shown in blue and orange lines and bars, 
respectively. The green points and bars indicate the assimilated observations, and the black lines and 
bars indicate the power plant emissions reported to EPA. In the left panels, shaded areas and error 
bars indicate the ±1σ range. In the right panels, the prior, posterior and EPA CEMS emissions are co-
sampled with valid hotspot estimates, and the error bars indicate the standard deviation of daily 
emissions.  
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An example of the emission correction after assimilating posterior hotspot CO2 emissions is 
shown in Figure 10. The emission corrections are confined to the grid cells containing the 
power plant and neighbouring grid cells. The IFS prior emissions contain spatial correlation 
over larger distances, but these were filtered out by applying localization as explained in 
Section 3.2. This results in fine-scale spatial emission corrections, as evidenced by the 
corrections of opposite sign for the nearby power plants in Eastern Germany.   

Figure 10. Posterior emission correction because of assimilating TROPOMI-derived hotspot CO2 
emissions on June 14th, 2021, over Europe. The emissions were regridded from the octahedral Tco399 
grid to a regular grid of 0.25°x0.25°.   The black circles depict the power plants for which hotspot emission 
estimates were available from CORSO Deliverable D2.2. 
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4.2 EnKF assimilation results for Europe 2021 

An analysis of the EnKF based data assimilation procedure to improve model agreement with 
observations (TROPOMI NO2) is presented in Figure 8. As expected, model agreement 
improves, with an annual overall increase in R2 of 0.15, a reduction in MAE of 7 × 1013 
molec/cm2, and an EVR of 16%. June and July show the largest improvements in correlation 
(0.36 and 0.29) and EVR (28% and 29%), likely driven by the maximal number of observations 
during these months (see Figure 11). In contrast, the largest reduction in MAE occurs in the 
winter, which coincides with higher atmospheric NO2 concentrations due to the longer NOx 
lifetime and elevated emissions. 

 

Figure 11. Monthly changes in model agreement with TROPOMI observations resulting from updating 
prior to posterior NOₓ fluxes. Shown are the changes in R², MAE, and EVR for each month. The annual 
overall change in each metric is indicated by the dashed red line. 

 

A comparison of the prior and posterior CO2 combustion fluxes for Europe in 2021 are shown 
in Figure 12. We find a consistent reduction in emissions uncertainty from a mean aggregate 
uncertainty of 96% in the prior, to 32% in the posterior. The fraction of days for which the prior 
lies within the posterior uncertainty exhibits substantial regional variability from 8% to 66%. 
Northern and central European countries such as Sweden (66%), Poland (57%), Germany 
(53%), and Belgium (52%) show the highest levels of prior–posterior consistency.  In contrast, 
southern and southeastern Europe - notably Greece (8%), Turkey (17%), Spain (23%), and 
Italy (38%) exhibit much poorer agreement. The normalised mean deviation error, which 
quantifies the typical magnitude of the deviation outside of the prior uncertainty relative to the 
flux magnitude, ranges from 0.13 to 0.40. Again, a clear geographical contrast emerges with 
Northern Europe consistently exhibiting smaller deviations (Sweden 0.13, Germany 0.18, 
Poland 0.18), implying that even when the prior falls outside posterior uncertainty the 
discrepancy is relatively small. By contrast, Turkey (0.4), Greece (0.33), Spain (0.26), and 
Hungary (0.26) show substantially larger normalised errors, reflecting stronger corrections by 
the assimilation. 
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(a) 

 

(b) 

Figure 12. Prior (grey) and posterior (red) CO₂ combustion fluxes from EnKF assimilation of TROPOMI 

NO₂ observations over Europe in 2021: (a) total European fluxes and (b) fluxes by the 14 highest-
emitting countries and the ocean (shipping). For each country, the agreement (proportion of days where 
prior and posterior fluxes overlap) and normalised deviation (mean deviation of posterior outside of prior 
uncertainty, normalised by flux magnitude) are indicated. 
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It is worth noting that there is relatively strong day-to-day variability in the posterior fluxes. This 
is likely driven by gaps and inhomogeneities in the observational coverage, which cause 
intermittent and uneven constraints in the EnKF system and worsens in winter months. 
Additional contributions may arise from underestimated observation or model–data mismatch 
uncertainties, retrieval artefacts, and transport model errors, leading to amplified high-
frequency noise in the posterior. In practice, the true emissions should be much smoother in 
time, and a temporally smoothed version of the posterior would likely provide a more realistic 
estimate.  

Visually, the inversion amplifies the seasonal cycle, which is largely driven by higher posterior 
fluxes during winter months (January, February, November, December) across most 
countries, but most prevalent in Turkey and Spain. In some countries - specifically the United 
Kingdom, the Netherlands, Belgium, and Germany - the posterior fluxes see some reductions 
during spring/summer months.  shows the mean monthly increment maps, for which these 
seasonal shifts are clear. The highest magnitude decreases in emissions are found in 
northwestern Europe in April and May, while the highest magnitude increases are seen across 
most of the region in November and December. 

 

 

Figure 13. Mean monthly posterior increment maps show the average regional trends of flux changes 
(red=increase, blue=decrease relative to prior). 
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4.3 Intercomparison between IFS hotspot-assimilated and GEOS-Chem 
posterior CO2 emissions for European power plants  

As a final step, we compare emission estimates from both assimilation procedures discussed 
in this report. The two methods are not necessarily expected to fully agree in their posterior 
flux estimates due to differences in spatial resolution between GEOS-Chem and IFS and the 
different setup of the control vectors (GEOS-Chem adjusts all anthropogenic sectors while the 
IFS hotspot assimilation only targets the energy sector). To minimise these effects, we only 
included five out of eight European power plants that have valid hotspot observations and 
where the contribution of the energy sector to the total emission is >75% on the GEOS-Chem 
grid. Additionally, we only focus on June, since there are only 1-3 hotspot observations for 
each power plant during December.  

Two examples of this comparison between both systems are shown in Figure 14. For the 
ENEA power plant (upper panels in Figure 14), the IFS posterior emissions are within the prior 
uncertainty, owing to the relatively high prior uncertainty and observation uncertainties. 
GEOS-Chem posterior fluxes are largely unchanged with respect to the prior for most days of 
the month. On some days, the assimilation results in a strong downward correction of GEOS-
Chem posterior emissions to within the IFS uncertainty range. For the Boxberg power plant 
(lower panels in Figure 14), GEOS-Chem posterior emissions are largely unchanged with 
respect to the prior on most days. Hotspot assimilations into the IFS leads to a large increase 
in emissions, resulting in a better agreement with the GEOS-Chem posterior on days with 
valid fluxes. The agreement between GEOS-Chem and the IFS hotspot assimilation 
procedure on individual is encouraging, but more targeted experiments would be required to 
obtain more quantitative understanding of the performance of both methods.  

 

Figure 14. Comparison of prior and posterior emissions between GEOS-Chem and the IFS-based 
posterior flux assimilation procedure for two European power plants in June 2021. Left panels shows 
the time series for this month (solid lines and shaded areas represent the daily mean and ±1σ range, 
respectively). The right panels display the monthly mean of both prior and posterior emission estimates, 
co-sampled with valid hotspot observations. Error bars indicate the standard deviation of the mean. 
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5 Conclusion 

This deliverable describes the methodology and implementation of the posterior flux 
assimilation methodology (Bousserez, 2019) to apply posterior corrections to IFS inversion 
results, as well as the further development of an Ensemble Kalman Filter inversion system in 
GEOS-Chem.   

The posterior flux assimilation methodology was first tested in a range of OSSE experiments, 
in which synthetic observations are generated from the ensemble control member, perturbed 
with an assumed uncertainty, and subsequently assimilated. This provided insights into the 
dependence of posterior uncertainty on ensemble size and potential misrepresentations in the 
assumed prior uncertainty. The ensemble-derived uncertainty is underestimated with respect 
to the approximated true uncertainty for small ensemble sizes. Additionally, the inversion 
approach cannot fully recover the posterior uncertainty starting from a wrongly specified prior 
uncertainty. Correcting mis-represented prior uncertainties requires an adaptive prior 
uncertainty tuning approach, which has been introduced as part of this deliverable. 

The posterior flux assimilation methodology was tested by assimilating hotspot CO2 emission 
estimates, derived from TROPOMI NO2 observations, into a posterior emission ensemble 
using a total of 252 hotspot emission estimates for 17 power plants in the United States and 
Europe. The hotspot assimilation algorithm results in reduced mismatch with the assimilated 
observations. Additionally, we have presented case studies where assimilation of satellite-
derived hotspot CO2 emissions improves the magnitude and temporal variability in posterior 
emissions compared to power-plant-reported emissions.  

The EnKF-based data assimilation clearly improves agreement between the model and 
TROPOMI NO2 observations, reducing flux uncertainties and correcting prior CO2 combustion 
fluxes across Europe. Northern and central Europe generally exhibit better prior–posterior 
consistency and smaller normalized deviations, while southern and southeastern regions 
require larger corrections, particularly during winter months. Posterior fluxes also show 
pronounced day-to-day variability, likely reflecting gaps in observational coverage, uneven 
constraints, and model–data mismatch uncertainties. Overall, the assimilation amplifies the 
seasonal cycle, with increased posterior fluxes in winter and reduced fluxes in spring and 
summer in several countries. Overall, these results highlight the advantage of the 
parameterised offline NOₓ chemistry in GEOS-Chem, which enables an efficient assimilation 
procedure without the need for computationally intensive full-chemistry ensemble runs. 

Future developments to the hotspot emission assimilation methodology include 
implementation of an adaptive prior uncertainty tuning approach based on cost function 
evaluation, application to other species (e.g., methane and NOx) and implementation of log-
normal uncertainty distribution. A further element that requires investigation is the use of 
hotspot emission assimilation on days without valid emission estimates (e.g. due to cloud 
cover limiting the detection of emission plumes), e.g. by using assumptions on emission 
persistence (Jervis et al., 2025). Further validation of hotspot emission estimates could be 
performed based on power plant-reported emissions in other regions (e.g., Tang et al., 2020).  
Additionally, the online implementation of this assimilation algorithm in the IFS requires 
satellite observation filtering (to avoid double use of the same satellite observations in the 
conventional 4D-Var assimilation and for the hotspot emission assimilation algorithm) and 
including the updated emissions (after hotspot assimilation) in the IFS forward model. This 
work is already underway as part of other activities within CAMS.   

A recommendation for further work of the regional GEOS-Chem inversion system is to develop 
multi-species inversions combining CO2 and NO2 observations, which are expected to further 
constrain fluxes and improve spatial and temporal accuracy. Refinement of the CO2:NOx 
emission ratio will also be necessary to improve results. Additionally, further validation using 
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in situ NO2 networks and CO2 observations, as well as exploration of other influencing factors 
such as temperature and meteorology, could be carried out to better understand remaining 
discrepancies and improve inversion robustness. 
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