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1 Executive Summary

This deliverable reports on the work performed in Task 2.4 of the CORSO project, where
various inversion approaches were used to estimate CO, emissions at a range of different
spatial scales.

First, this work reports on the implementation and further development of a posterior flux
assimilation methodology, first proposed by Bousserez (2019), which enables the assimilation
of external inversion products as observations in the Integrated Forecasting System (IFS).
The assimilation method is first tested in a range of Observing System Simulation Experiments
(OSSEs) to investigate the impact of ensemble size and a mis-represented prior uncertainty
on the posterior uncertainty obtained by applying this method. From these OSSE experiments,
we conclude that the posterior uncertainty is underestimated in small ensembles, and that an
adaptive tuning procedure is required to correct for potential misrepresentations in the prior
uncertainty.

We then apply this method to assimilate hotspot emission estimates into a posterior emission
ensemble obtained from joint IFS Ensemble Data Assimilation and emission inversion
experiments. In this case, hotspot NOx emissions from selected power plants in the United
States and Europe are converted to CO, emissions using a prior emission ratio and
subsequently assimilated into an IFS emission ensemble. The required observational
information (source rate, source rate uncertainty and hotspot location) is taken from CORSO
Deliverable D2.2 (Kuhimann et al., 2025). The assimilation results in an improved agreement
with the assimilated observations and agrees reasonably well with independent emissions
observations from Continuous Emissions Monitoring System (CEMS) for US power plants.

Second, this work develops a regional NOy inversion framework that uses satellite NO>
observations to constrain daily anthropogenic NOy emissions over Europe for 2021. The
GEOS-Chem model with a lightweight offline representation of NOx chemistry is coupled to an
Ensemble Kalman Filter (EnKF) system and constrained using high-quality TROPOMI NO-
data. Emission uncertainties, spatial error correlations, and observation errors are explicitly
represented, enabling robust and spatially resolved updates of NOy fluxes across the
European domain.

The optimised NOyx emissions are then used to directly update fossil-fuel CO, emissions
through prescribed, sector-specific NOx:CO2 emission ratios. The assimilation significantly
improves agreement between modelled and observed NO, and leads to a large reduction in
uncertainty in European CO; emissions. The strongest corrections occur in southern and
southeastern Europe, while northern and central regions show higher prior—posterior
consistency. The resulting emissions exhibit enhanced wintertime fluxes and clear regional
seasonal adjustments, demonstrating the potential of satellite NO- to provide powerful indirect
constraints on anthropogenic CO- emissions.

This work has contributed to the development of the global CO2MVS with a first
implementation of posterior flux assimilation described in the CO2MVS prototype methodology
and by further developing a regional inversion system that could be used for regional
benchmarking of the global emissions.
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2 Introduction

2.1 Background

To enable the European Union (EU) to move towards a low-carbon economy and implement
its commitments under the Paris Agreement, a binding target was set to cut emissions in the
EU by at least 40% below 1990 levels by 2030. European Commission (EC) President von
der Leyen committed to deepen this target to at least 55% reduction by 2030. This was further
consolidated with the release of the Commission's European Green Deal on the 11th of
December 2019, setting the targets for the European environment, economy, and society to
reach zero net emissions of greenhouse gases in 2050, outlining all needed technological and
societal transformations that are aiming at combining prosperity and sustainability. To support
EU countries in achieving the targets, the EU and European Commission (EC) recognised the
need for an objective way to monitor anthropogenic CO, emissions and their evolution over
time.

Such a monitoring capacity will deliver consistent and reliable information to support informed
policy- and decision-making processes, both at national and European level. To maintain
independence in this domain, it is seen as critical that the EU establishes an observation-
based operational anthropogenic CO. emissions Monitoring and Verification Support (MVS)
(CO2MVS) capacity as part of its Copernicus Earth Observation programme.

The CORSO research and innovation project will build on and complement the work of
previous projects such as CHE (the CO2 Human Emissions), and CoCO2 (Copernicus CO2
service) projects, both led by ECMWEF. These projects have already started the ramping-up
of the CO2MVS prototype systems, so it can be implemented within the Copernicus
Atmosphere Monitoring Service (CAMS) with the aim to be operational by 2026. The CORSO
project will further support establishing the new CO2MVS addressing specific research &
development questions.

The main objectives of CORSO are to deliver further research activities and outcomes with a
focus on the use of supplementary observations, i.e., of co-emitted species as well as the use
of auxiliary observations to better separate fossil fuel emissions from the other sources of
atmospheric CO,. CORSO will deliver improved estimates of emission factors/ratios and their
uncertainties as well as the capabilities at global and local scale to optimally use observations
of co-emitted species to better estimate anthropogenic CO, emissions. CORSO will also
provide clear recommendations to CAMS, ICOS, and WMO about the potential added-value
of high-temporal resolution CO, and APO observations as tracers for anthropogenic
emissions in both global and regional scale inversions and develop coupled land-atmosphere
data assimilation in the global CO2MVS system constraining carbon cycle variables with
satellite observations of soil moisture, LAl, SIF, and Biomass. Finally, CORSO will provide
specific recommendations for the topics above for the operational implementation of the
CO2MVS within the Copernicus programme.
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2.2 Scope of this deliverable

2.2.1 Objectives of this deliverable

In this deliverable, we:

1.

Introduce and test a posterior flux assimilation methodology to assimilate hotspot
emission estimates from native-resolution satellite observations into a posterior
emission ensemble.

Apply the posterior flux assimilation algorithm to derive updates to power plant CO-
emissions in the United States and Europe and compare these estimates to power
plant-reported data and an independent inversion framework.

Incorporate the parametrised NOy chemistry scheme into GEOS-Chem to apply
Ensemble Kalman Filter (EnKF) assimilation of to update European prior fluxes for
2021.

2.2.2 Work performed in this deliverable

Implemented a posterior flux assimilation algorithm to correct posterior IFS CO;
emissions based on hotspot emissions derived from TROPOMI NO; observations.
Testing of the posterior flux assimilation in a set of Observing System Simulation
Experiments (OSSEs).

Application of the posterior flux assimilation algorithm for June and December 2021 for
selected power plants in the United States and Europe.

Implemented EnKF assimilation of TROPOMI NO; in GEOS-Chem to constrain
European NOx emissions for 2021.

Derived updated CO, combustion fluxes from the EnKF posterior NOxemissions using
prescribed NO,:COs; ratios.

Quantified improvements in model-observation agreement and CO: emission
uncertainty reduction.

Comparison of posterior emissions between the hotspot assimilation algorithm and
GEOS-Chem for 5 power plants in Europe.

2.2.3 Deviations and counter measures

No deviations

2.3 Project partners:

Partners

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER ECMWF
FORECASTS

AKADEMIA GORNICZO-HUTNICZA IM. STANISLAWA AGH
STASZICA W KRAKOWIE

BARCELONA SUPERCOMPUTING CENTER - CENTRO BSC

NACIONAL DE SUPERCOMPUTACION
COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES | CEA
ALTERNATIVES

KAMINSKI THOMAS HERBERT iLab
METEO-FRANCE MF
NEDERLANDSE ORGANISATIE VOOR TOEGEPAST TNO

NATUURWETENSCHAPPELIJK ONDERZOEK TNO
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3 Posterior flux assimilation methodology

3.1 Input data
3.1.1 Hotspot emission estimates derived from TROPOMI

We assimilate hotspot emission estimates derived in CORSO Deliverable D2.2 (Kuhlmann et
al. 2025), which contains daily NOyx emissions for the power plants in the top 100 list of
strongest emitting point sources in the CORSO point source database (Guevara et al. 2024),
considering only those power plants sufficiently far from other emission sources. In this
analysis, we focus on the United States and Europe, since power plants in these regions have
Continuous Emissions Monitoring Systems (CEMS) for monitoring compliance with air quality
regulations. These data are used for validation, and are further described in Section 3.1.3. In
total, 17 power plants in the United States and Europe fulfil these criteria. Figure 1 displays
the yearly average NOx emissions for these power plants.

The hotspot emission estimates are derived from NO; observations from the TROPOspheric
Monitoring Instrument (TROPOMI) onboard Sentinel-5P (Veefkind et al. 2012).The NOy
emissions were estimated using NO; observations from individual TROPOMI overpasses
using the cross-sectional flux method, which estimates emissions by integrating the NO, mass
through cross-sections of an emission plume, and multiplying by the wind speed taken from
ERAS5 (Hersbach et al. 2020) to obtain an emission rate. This method accounts for NO,-to-
NOx conversion and NOy decay. More details can be found in Kuhlmann et al. (2025).

Prior to assimilation, we convert the NOx hotspot emission estimates to CO2 by applying a
CO2:NOx emission ratio (ER), derived from the IFS prior (CAMS-GLOB-ANT, version 6.2;
Soulie et al. 2024). The CO; emission uncertainty is derived by applying error propagation
using the hotspot NOx emission uncertainty and an assumed ER uncertainty. We use a relative
ER uncertainty of 42% derived from satellite observations (Kuhlmann et al. 2021, Liu et al.
2020). An example of this conversion is shown in Figure 2. We note that this uncertainty
estimate is likely to be conservative given the uncertainties involved in estimating this ratio
from satellite observations (e.g. due to the retrieval algorithm and atmospheric chemistry). On
the other hand, since CO; and NOx emissions are correlated, part of the uncertainty in the
prior emission ratio cancels, which is not accounted for in this satellite-derived ER uncertainty
estimate.
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Figure 1. Locations of the energy sector emission hotspots in the United States (left panel) and Europe
(right panel) used for assimilation in this study. The circle colour reflects the annual average NOx
emissions derived based on TROPOMI observations.

D2.7 Multi-scale global IFS inversion outputs (2021) with assimilated posterior emissions from hot-spots
7



CORSO

Intermountain (UT)

()]
o

CAMS-GLOB-ANT v6.2

® Hotspot flux
¢ (] L 1

* —e— EPA CEMS

B
o
1

NO, emissions
[kt NO, yr1]

'(

B =]
o o
1

N
o
L

CO; emissions
[Mt CO, yr1]

o

=
o
!

o
o
|

CO-2:NOy ER
[kg CO; (g NO,)™1]
o
o

01-06 05-06 09-06 13-06 17-06 21-06 25-06 29-06 01-07
Date [d-m]

Figure 2. NOx emissions (upper panel), CO2 emissions (centre panel) and the CO2:NOx emission ratio
(lower panel) for the Intermountain power plant in Utah, USA, from three different data sets: the United
States Environmental Protection Agency’s Continuous Emission Monitoring System (EPA CEMS, blue),
the CAMS-GLOB-ANT emission inventory v6.2 (orange) and the TROPOMI-derived NOx emissions
derived using the cross-sectional flux method (green). Hotspot CO2 emissions were derived from
hotspot NOx emissions as described in Section 3.1.1.

3.1.2 IFS ensemble emission inversion experiments

3.1.2.1 IFS forward model

The Integrated Forecasting System (IFS) is used operationally at ECMWF for Numerical
Weather Prediction (NWP) and for monitoring and forecasting air pollution and greenhouse
gases as part of the Copernicus Atmosphere Monitoring Service (CAMS) (Flemming et al.,
2015, Agusti-Panareda et al., 2022). For this deliverable, we apply the IFS greenhouse gas
configuration. The model has 137 hybrid sigma-pressure levels from the surface to 0.1 hPa
with a vertical resolution that varies with (geometric) altitude, peaking in the planetary
boundary layer. Tracer advection is calculated with a semi-Lagrangian scheme (Diamantakis
and Magnusson, 2016), and a mass fixer is subsequently applied to ensure mass conservation
(Agusti-Panareda et al., 2017). The transport model additionally includes parameterizations
of turbulent mixing (Sandu et al., 2013) and convection (Bechtold et al., 2014). The forward
model is run on a cubic octahedral T¢,399 grid with an approximate horizontal resolution of 25
km, using a time step of 15 minutes.

3.1.2.2 IFS Ensemble Data Assimilation + inversion framework

The posterior flux assimilation method relies on an ensemble of emissions, which in this case
is derived from Ensemble Data Assimilation (EDA) inversion experiment with the Integrated
Forecasting System. EDA has been used operationally at ECMWF since 2010, and its
applicability for greenhouse gas state optimization has recently been investigated. The IFS
inversion framework is based on the 4D-Var data assimilation system implemented in IFS
(Courtier et al. 1994, Rabier et al. 2000). In an emission inversion context, the 4D-Var state
vector is extended with a 2D multiplicative emission scaling factor such that IFS jointly
optimizes meteorology, the atmospheric state and emissions, using the following cost function:

D2.7 Multi-scale global IFS inversion outputs (2021) with assimilated posterior emissions from hot-spots
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J(x,p) = (x —xp) "B (x — x,) + (p — pp) "By (p — Pp)
+(y - h(x,p)) R~ (y — h(x,p)).

The cost function is minimized with respect to state vectors x (meteorological variables and
atmospheric concentrations) and p (emission scaling factors). B, and B, represent the

background and prior error covariance matrices, respectively, and R is the observation error
covariance matrix. A previous version of the IFS inversion framework has been described in
McNorton et al. (2022).

The IFS inversion system currently optimizes total (anthropogenic) surface fluxes using a
single 2D scaling factor field per species. The posterior emissions are optimized using three
inner-loop minimizations at different resolutions (~125 km, ~100 km and ~80 km) within a 12-
hour assimilation window. Posterior scaling factors from these inversions are applied to the
prior emissions on a grid of ~25 km resolution. We use an ensemble with one control member
and ten perturbed members, initialized with a uniform prior uncertainty of 30% and a spatially
uniform correlation length scale of 100 km. The current inversion configuration assumes no
time correlation between emission adjustments in consecutive assimilation windows, which
may lead to spurious day-to-day variability in posterior emissions. The prior error covariance
matrix setup will be further tested as part of the CO2MVS ramp-up in the coming period.

(1)

One application of the EDA is to provide a flow-dependent estimate of the background error
covariance matrix B,. The EDA generates spread by applying random perturbations to the
assimilated observations, the model physics during the forward model integration, and sea
surface temperature. The emissions in the perturbed EDA ensemble members were
generated by multiplying the square root L of the prior error covariance matrix (B, = Lpo,) to

a two-dimensional field with random values (v):
Py = Lyv. (2)

This ensures that the emission perturbations are consistent with the prior error specification
for the emission scaling factors in each assimilation window.

3.1.3 Validation data: United States power plant-reported emissions

We use Continuous Emission Monitoring System (CEMS) data from the United States
Environmental Protection Agency’s Clean Air Market Program Data portal (EPA, 2025). In this
dataset, direct stack measurements of NO,, CO. (among other pollutants) are reported for
power plants in the United States. This type of data has been previously used in inverse
modelling of CO» emissions based on satellite NO, observations (Liu et al., 2020). CEMS data
is available at high temporal resolution (hourly or daily) and are thus well suited to evaluate
the impact of hotspot emission assimilation on temporal emission variability. We use daily
aggregated CEMS data as an independent validation of the assimilated hotspot emission
product. An example daily time series of EPA CEMS data is shown in Figure 2.

3.2 Posterior flux assimilation algorithm

Following Bousserez (2019), we apply a Kalman filter update algorithm to assimilate
TROPOMI-derived posterior emissions from hotspots (x,.) in prior ensemble member m (zj, ;)
to yield the updated ensemble member z, ,,,:

1 1 -1
Zam = Zom + = Zp(AZy)" (Z= AZY(AZ)T +E) (%, — AZpm), (3)

where N is the ensemble size, Z,, is the prior ensemble of emission anomalies with respect to
the control member z,,, A is the averaging kernel mapping the ensemble (member) to

D2.7 Multi-scale global IFS inversion outputs (2021) with assimilated posterior emissions from hot-spots
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observation space, and E is a diagonal matrix containing hotspot emission uncertainties
(expressed as d?2).

The prior ensemble (derived from the IFS emission inversion algorithm) may contain long-
distance correlations, which can be caused by the small ensemble size. This results in
spurious posterior increments (the right-hand term in Equation (3)) far from the location of the
hotspot after applying the above equation. To localize these emission increments, we apply
Gaspari-Cohn localization (Gaspari and Cohn, 1999) to the posterior emission update.
Sensitivity tests with a varying localization radius yields an optimum value of 10 km.

The IFS ensemble spread in Z, is not necessarily representative of the true prior error
standard deviation. This could be due to a misrepresentation in the magnitude or temporal
variability of the prior emission. In extreme cases, this can result in first-guess departures of
up to several magnitude in extreme cases. To ensure a representative prior ensemble spread
required for assimilating hotspot fluxes, we apply an objective tuning method based on a x?
diagnostic. This method relies on evaluating the cost function of the assimilation algorithm,
which has the following property:

E[](za,m)] =D (4)

where p is the number of observations (1 in this case), and J(z,,,) is the cost function
evaluated for the posterior emission estimate. After applying a Gaspari-Cohn localization,
which filters the sampling noise by restricting the emission increments around the assimilated
hotspot, the control vector space can be reduced to the local subspace with non-zero posterior
emission increments (z,). This enables to reduce the dimension of the problem and explicitly
invert B. We write the cost function in the reduced space as follows:

1 1
Jlzd] = 3 (Z&,m _ Z;,,m)TB'_l(Ziz.m — Z;:,m) + > (xr — AZa,m)TE_l(xr — Aza,m) (5)

where zj, is the prior ensemble member m in the subspace with non-zero emission increments,
and

B' = Z),(Z})" = SZ,Z}S" (6)

is the prior error covariance matrix, restricted to this subspace by applying a selection matrix
S. The initial guess for the relative error gy, is defined as:

_ |Azb,m_xr|
% = Tazyn]

(7)

and this value is used to update B'. A fixed-point algorithm can be used to find the solution to
Equation (4), i.e. J[zqm] = nops (S€€, €.9., Chapnik et al., 2006).

We note that the iterative adaptive tuning of g, based on minimization of J is not yet
implemented. As a preliminary test, we currently use the initial guess for a;, (Equation (7)) in
the assimilation procedure. This does not necessarily result in reaching J[z,,,] = n,ps. As a
result, the current version of the algorithm does not always produce optimal results in terms
of posterior uncertainty reduction. We evaluate the performance of the current assimilation
algorithm in Section 4.1.

D2.7 Multi-scale global IFS inversion outputs (2021) with assimilated posterior emissions from hot-spots
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Figure 3. Summary statistics of the first OSSE experiment. Left panel: relative difference between the
ensemble derived and analytical posterior (calculated as (P& — P%)/P%) as a function of ensemble size.
Points and error bar refer to the average and £10 range, respectively, calculated at the locations of the
50 assimilated observations. Right panel: spatial error correlation in the posterior error covariance
matrix, displayed as the average (points) and +1c¢ range derived from a 1000-member sample of off-
diagonal elements in P¢.

3.3 Algorithm validation Observing System Simulation Experiments
3.3.1 Posterior uncertainty as a function of ensemble size

We validate the implementation of this algorithm by evaluating the posterior error reduction in
Observation System Simulation Experiments (OSSEs), and by studying its ability to recover
the theoretical posterior error for different ensemble sizes. The theoretical posterior error
covariance matrix (P%) can be approximated as:

P, = (B~1+ ATE-14) ", (8)
where B is the prior error covariance matrix, and the other terms as defined for Equation (3).
An estimate of the posterior error can also be derived from the posterior ensembile:

1
PG =~—Z,Z5, (9)

where Z,, is the posterior ensemble of anomalies with respect to the ensemble mean. Due to
sampling noise, P¢ and P! may differ especially for small ensembles. With this OSSE setup,
we study the properties of the posterior error covariance approximation as a function of
ensemble size.

For this experiment, we construct synthetic ensembles of uncorrelated Gaussian noise with
mean 100 (unitless) and a prior error standard deviation of 20%, using a coarse spatial
resolution (1000 grid cells). Synthetic emission observations (n,,; = 50) are sampled from
the control member and perturbed with an observation uncertainty of 40%. These observations
are assimilated in the synthetic ensemble using Equation (3).

Figure 3 shows the dependence of the posterior uncertainty and spatial error correlation as a
function of ensemble size. The ensemble-derived posterior uncertainty, shown in Figure 3 (left
panel) is underestimated for small ensembles, by up to 40% for a 10-member ensemble. This
underestimation is reduced as the ensemble size increases, following theoretical
expectations. These ensembles agree within 1 standard deviation for ensembles of size 100
or larger. To avoid overfitting of the observations, a sufficiently large ensemble size must be
chosen. Spatial error correlation is present in the posterior error covariance matrix due to
sampling noise. On average, the spatial error correlation is near-zero for all tested ensemble
sizes (Figure 3, right panel). Nonetheless, substantial off-diagonal noise is present in P¢ for
small ensembles, which decreases towards zero for the larger ensemble sizes tested in this

D2.7 Multi-scale global IFS inversion outputs (2021) with assimilated posterior emissions from hot-spots
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Figure 4. Relative prior and posterior error standard deviation in the OSSE experiment to investigate
the impact of wrongly specified prior uncertainties, shown as a function of the “false” prior uncertainty.

study. Based on this OSSE analysis, we conclude that the implementation of the Kalman filter
assimilation algorithm introduced behaves according to theoretical expectations, and that
sufficiently large ensembles are required to minimize underestimation of the posterior
uncertainty and spurious spatial error correlation.

3.3.2 Impact of mis-prescribed prior uncertainties

In a second OSSE experiment, we test the ability of the posterior flux update algorithm without
adaptive tuning of g;, to correct for a wrongly specified prior uncertainty. For this OSSE, we
generate 50 synthetic observations from a 100-member prior ensemble with a correctly
specified, or “true”, prior uncertainty of 30%. These observations are perturbed using an
observation uncertainty of 30%. In a second ensemble, referred to as the “false” ensemble,
the prior uncertainty (expressed as a relative standard deviation) is incorrectly specified at
values ranging from 0.1-1 with increments of 0.1. The same synthetic observations (sampled
from the “true” prior ensemble) are assimilated into this ensemble. The results are displayed
as a function of the “false” prior uncertainty in Figure 4.

In this OSSE experiment, the “true” posterior uncertainty is reduced compared to the prior as
expected. The posterior uncertainty is underestimated when starting from an underestimated
prior uncertainty. When the “false” prior uncertainty is larger than the “true” prior uncertainty,
the “false” posterior uncertainty is corrected downward, and seems to plateau as the “false”
prior uncertainty increases. We conclude that an adaptive tuning of g, is required prior to
assimilation in order to recover the “true” posterior uncertainty when starting from a wrongly
specified prior uncertainty.

D2.7 Multi-scale global IFS inversion outputs (2021) with assimilated posterior emissions from hot-spots
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3.4 EnKF inversion experiments
3.4.1 GEOS-Chem offline NOx chemistry model

We use version 14.4.3 of the GEOS-Chem atmospheric chemistry transport model (Bey et al.,
2001). Our simulations use the nested-grid carbon configuration, into which we incorporate
NOx species by implementing a lightweight offline treatment of NOx chemistry. The chemistry
rates are calculated using offline chemistry fields saved from a full chemistry simulation and
works on the principle that the instantaneous effective lifetime of NOy across space and time
is assumed to be unchanged under emission perturbations (Schooling et al. 2025).

The nested model is centred over mainland Europe (32.75 to 61.25° N, -15 to 40° E) with 47
vertical levels, and a horizontal spatial resolution of 0.25°x0.3125°. Lateral boundary
conditions to the European domain were created from a global GEOS-Chem model run at
4x5°, with three-hourly output fields. The nested model was run with a 5-minute transport
timestep and 10-minute chemistry timestep.

The model is driven by offline meteorological fields from the GEOS-FP dataset provided by
NASA’s Global Modelling and Assimilation Office (GMAO), with a native resolution of
0.25°x0.3125°, 72 vertical levels, and 3-hourly temporal resolution. The prior fluxes for
combustion emissions of NOx and CO; are taken from the CAMS_REG v8.1 emissions
inventory (Hohenberger et al., 2025, Figure 5) at 0.1x0.05° resolution. Temporal variability in
emissions (monthly, daily, hourly) are represented using sector-based temporal scaling factors
(Figure 5b). The combustion sectors included are public power, industry, road transport, ships,
aviation, off-road machinery, and other combustion sources. The CO2:NOx emission ratio is
prescribed for each of these combustion sector, allowing the combustion-based NOy fluxes to
be converted into ffCO flux estimates. Non combustion sources, including solvents, waste,
agriculture, and fugitive emissions, are prescribed as fixed within the data assimilation. In
addition, the NOy emissions from soil, lightning, and biomass burning are parameterised within
GEOS-Chem (Vinken et al. 2014, Gressent et al. 2016).
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Figure 5. (a) The 2021 CAMS-REG v8.1 emissions data for CO2, NOx, and their respective ratio

across the main combustion sectors. (b) The temporal profiles applied to the Public Power, Industry,

Other Stationary Combustion, and Road Transport sectors.
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3.4.2 TROPOMI observations

We used satellite observations of NO, from the TROPOspheric Monitoring Instrument
(TROPOMI) to constrain anthropogenic NOx emissions over Europe. We use v2.4.0 data for
the full year 2021. TROPOMI provides daily global coverage with a local equatorial overpass
time of 13:30, a 2,600 km swath, and 7x7 km? nadir resolution. We select only high-quality
retrievals with a quality assurance value, qga>0.75. The data was resampled onto the GEOS-
Chem 0.25°x0.3125° grid, and the satellite averaging kernels were interpolated onto the 47
vertical levels of the model to compute vertically sensitive model column densities.

In our European region following filtering with quality assurance, the daily and monthly
coverage of observations for the year 2021 are shown in Figure 6. The coverage has clear
seasonal dependence, with mean daily coverage of around 45% in winter (DJF) and 70% in
summer (JJA).
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Figure 6. The daily and monthly proportional coverage of TROPOMI NO2 over GEOS-Chem pixels in
the European domain for 2021. Coverage is defined as the proportion of GEOS-Chem grid cells
across the European domain that receive at least one valid TROPOMI observation within the
specified time period. Thus, 100% daily coverage means every grid cell was observed at least once
during the period (day or month).

3.4.3 Ensemble Kalman Filter (EnKF) procedure

We use an existing EnKF framework that has been widely used to estimate CO, and CH4
fluxes from atmospheric observations (Feng et al. 2009, 2017). In this implementation, we
assimilate satellite-based NO- column observations (yobs), to update the prior flux state vector
(xf) and produce the posteriori state vector (x?) using the standard Kalman filter formulation:

x4 = xf + K[yobS —fo], (10)

where H is the observation operator that maps the state vector to observation space, and K is
the Kalman gain matrix.

In the ensemble approach, we introduced an ensemble of N=100 perturbation states. The
ensemble prior error covariance matrix (£) was constructed using the CAMS-REG v8.1
emission uncertainties (on, 0c) together with the cross-species error correlation product (r).

D2.7 Multi-scale global IFS inversion outputs (2021) with assimilated posterior emissions from hot-spots
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We generated an ensemble of NO, emission scaling's by sampling from a bivariate normal
distribution, N(0, %) at each grid cell. This produces spatially resolved perturbations that
preserve both the magnitude of uncertainties and the correlation between NO, and CO,, errors
(Figure 7).

NOXx uncertainty

CO2 uncertainty

Error Correlation
v > 7

Prior Ensemble Error 05

Figure 7. NOx and COz2 uncertainties (on, oc) from CAMS-REG v8.1 emissions, the cross-species
error correlation product (r), taken from the global CORSO product, and the prior ensemble errors
calculated from the prior error covariance matrix ().

The forward-modelled NO2 columns from each ensemble member (denoted H(x)) are
compared to satellite retrievals to compute the innovation vector d = yoss - H(X). We apply a
spatial mask to exclude edge regions and measurement outliers. The Kalman gain matrix is
then estimated using the ensemble approximation (Feng et al. 2009, 2017):

K ~ax/ (av )" [av/ (av/)" + R]_l, (12)

where AY' represents the ensemble of deviations in the observation space, and R is the
observation error covariance matrix. To reduce the impact of spurious long-range correlations,
we applied localisation to the Kalman gain. We compute the distance between each grid cell
and each valid observation, and apply a Gaussian tapering function exp(-di/L) with a
correlation length scale L = 200 km. This localisation is applied multiplicatively to the Kalman
gain, element-wise.

In our setup, R is defined as a diagonal matrix that incorporates satellite retrieval uncertainty
using the TROPOMI precision values, and includes a fixed model error of 1x10" molecules
(molec)/cm?, corresponding to the average reconstruction error of NO, columns derived from
scaled offline chemistry (Schooling et al. 2025). Additionally, we applied an adaptive inflation
scheme that increased the observation error covariance by a factor of 10 whenever the
observed values significantly differ from the model predictions (|d|>2x70° molec/cm?).
Furthermore, an additional constraint was applied to ensure the posterior flux estimates are
always greater than zero.

To quantify the change in model agreement with observations as the fluxes are updated to
posterior we assess the coefficient of determination (R?), the mean bias, mean absolute error
(MAE), and the error variance reduction (EVR), defined as:

2
EVR = 100 x (1— %) (13)

prior

where 0%yi0r. 0%p0st are the variances of the prior and posterior model errors, respectively. Since
NOx is short-lived observations are generally insensitive to emission changes from previous
days so we use a data assimilation window of one day. Due to the non-linearity of NOx
emissions with atmospheric NO, observations, it is possible to maximise error reduction by
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repeating the ensemble runs multiple times in an iterative procedure. Up to 4 iterations were
performed, however the procedure was broken early if the percentage reduction in mean
absolute error falls below 1, suggesting a plateau in model improvement.

4 Results

4.1 Impact of hotspot assimilation on power plant CO2 emissions

The impact of the posterior flux hotspot assimilation procedure is shown for the Intermountain
(Figure 8) and Thomas Hill (Figure 9) power plants in the United States, where prior and
posterior fluxes are compared against power plant-reported emissions from CEMS data. For
the Intermountain power plant, the satellite-derived fluxes are within one standard deviation of
the prior ensemble mean for most of the days in June and December 2021, resulting in a minor
posterior emission update that agrees with CEMS data. A temporary peak in emissions is seen
on June 15-19, when CEMS emissions are outside the prior uncertainty range. This peak is
also seen in the satellite-derived emissions, which are 2-4x higher than the prior. The posterior
emissions are corrected upward by up to a factor 2 on these days, resulting in a close
agreement with the reported emissions for the Intermountain power plant during this episode.

For the Thomas Hill Energy Center (Figure 9), reported emissions are larger than the IFS prior
for both analysed months. In June, satellite-derived emissions suggest lower emissions within
the prior uncertainty range. As a result, the posterior emissions are not substantially different
from the prior during this month. During December, there is a better agreement between the
satellite-derived and power plant-reported emissions. As a result, the posterior emissions are
corrected upward on most days, which results in a better agreement with reported emissions.
On individual days (e.g., December 3, 8 and 13), the posterior mean is outside the prior
uncertainty range, demonstrating that the prior uncertainty tuning can correct for
misrepresented prior emissions or its temporal variability.

Overall, 292 individual hotspot emission estimates were assimilated. For the majority of
assimilated hotspot emissions (86%), this resulted in an improved agreement with the
assimilated flux. In 52% of the cases, this resulted in reduction of the posterior uncertainty.
This due to the low number of posterior fluxes and due to noise resulting from the low IFS
ensemble size (Figure 3). The implementation of iterative tuning of g, based on cost function
evaluation (see Section 3.2) is expected to increase the rate of posterior error reduction.
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Figure 9. Impact of hotspot assimilation on CO2 emissions for the Intermountain power plant for June
(upper panels) and December (lower panels) 2021, displayed as a time series (left column) and monthly
average (right column). Prior and posterior emissions are shown in blue and orange lines and bars,
respectively. The green points and bars indicate the assimilated observations, and the black lines and
bars indicate the power plant emissions reported to EPA. In the left panels, shaded areas and error
bars indicate the +10 range. In the right panels, the prior, posterior and EPA CEMS emissions are co-

sampled with valid hotspot estimates, and the error bars indicate the standard deviation of daily
emissions.
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Figure 8. As Figure 9, but for the Thomas Hill Energy Center power plant.
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Figure 10. Posterior emission correction because of assimilating TROPOMI-derived hotspot CO:
emissions on June 14t 2021, over Europe. The emissions were regridded from the octahedral Tcc399
grid to aregular grid of 0.25°x0.25°. The black circles depict the power plants for which hotspot emission
estimates were available from CORSO Deliverable D2.2.

An example of the emission correction after assimilating posterior hotspot CO, emissions is
shown in Figure 10. The emission corrections are confined to the grid cells containing the
power plant and neighbouring grid cells. The IFS prior emissions contain spatial correlation
over larger distances, but these were filtered out by applying localization as explained in
Section 3.2. This results in fine-scale spatial emission corrections, as evidenced by the
corrections of opposite sign for the nearby power plants in Eastern Germany.
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4.2 EnKF assimilation results for Europe 2021

An analysis of the EnKF based data assimilation procedure to improve model agreement with
observations (TROPOMI NOy) is presented in Figure 8. As expected, model agreement
improves, with an annual overall increase in R? of 0.15, a reduction in MAE of 7 x 10"
molec/cm?, and an EVR of 16%. June and July show the largest improvements in correlation
(0.36 and 0.29) and EVR (28% and 29%), likely driven by the maximal number of observations
during these months (see Figure 11). In contrast, the largest reduction in MAE occurs in the
winter, which coincides with higher atmospheric NO; concentrations due to the longer NOy
lifetime and elevated emissions.
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Figure 11. Monthly changes in model agreement with TROPOMI observations resulting from updating
prior to posterior NOx fluxes. Shown are the changes in R?, MAE, and EVR for each month. The annual
overall change in each metric is indicated by the dashed red line.

A comparison of the prior and posterior CO, combustion fluxes for Europe in 2021 are shown
in Figure 12. We find a consistent reduction in emissions uncertainty from a mean aggregate
uncertainty of 96% in the prior, to 32% in the posterior. The fraction of days for which the prior
lies within the posterior uncertainty exhibits substantial regional variability from 8% to 66%.
Northern and central European countries such as Sweden (66%), Poland (57%), Germany
(53%), and Belgium (52%) show the highest levels of prior—posterior consistency. In contrast,
southern and southeastern Europe - notably Greece (8%), Turkey (17%), Spain (23%), and
Italy (38%) exhibit much poorer agreement. The normalised mean deviation error, which
quantifies the typical magnitude of the deviation outside of the prior uncertainty relative to the
flux magnitude, ranges from 0.13 to 0.40. Again, a clear geographical contrast emerges with
Northern Europe consistently exhibiting smaller deviations (Sweden 0.13, Germany 0.18,
Poland 0.18), implying that even when the prior falls outside posterior uncertainty the
discrepancy is relatively small. By contrast, Turkey (0.4), Greece (0.33), Spain (0.26), and
Hungary (0.26) show substantially larger normalised errors, reflecting stronger corrections by
the assimilation.
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Figure 12. Prior (grey) and posterior (red) CO, combustion fluxes from EnKF assimilation of TROPOMI
NO, observations over Europe in 2021: (a) total European fluxes and (b) fluxes by the 14 highest-
emitting countries and the ocean (shipping). For each country, the agreement (proportion of days where
prior and posterior fluxes overlap) and normalised deviation (mean deviation of posterior outside of prior
uncertainty, normalised by flux magnitude) are indicated.
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It is worth noting that there is relatively strong day-to-day variability in the posterior fluxes. This
is likely driven by gaps and inhomogeneities in the observational coverage, which cause
intermittent and uneven constraints in the EnKF system and worsens in winter months.
Additional contributions may arise from underestimated observation or model—-data mismatch
uncertainties, retrieval artefacts, and transport model errors, leading to amplified high-
frequency noise in the posterior. In practice, the true emissions should be much smoother in
time, and a temporally smoothed version of the posterior would likely provide a more realistic
estimate.

Visually, the inversion amplifies the seasonal cycle, which is largely driven by higher posterior
fluxes during winter months (January, February, November, December) across most
countries, but most prevalent in Turkey and Spain. In some countries - specifically the United
Kingdom, the Netherlands, Belgium, and Germany - the posterior fluxes see some reductions
during spring/summer months. shows the mean monthly increment maps, for which these
seasonal shifts are clear. The highest magnitude decreases in emissions are found in
northwestern Europe in April and May, while the highest magnitude increases are seen across
most of the region in November and December.

Mean Monthly Posterior Increment
January February

10°

- 105

L —105

_106

o
CO2 Flux increment (Posterior - Prior) [kg/day]

Figure 13. Mean monthly posterior increment maps show the average regional trends of flux changes
(red=increase, blue=decrease relative to prior).
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4.3 Intercomparison between IFS hotspot-assimilated and GEOS-Chem
posterior CO2 emissions for European power plants

As a final step, we compare emission estimates from both assimilation procedures discussed
in this report. The two methods are not necessarily expected to fully agree in their posterior
flux estimates due to differences in spatial resolution between GEOS-Chem and IFS and the
different setup of the control vectors (GEOS-Chem adjusts all anthropogenic sectors while the
IFS hotspot assimilation only targets the energy sector). To minimise these effects, we only
included five out of eight European power plants that have valid hotspot observations and
where the contribution of the energy sector to the total emission is >75% on the GEOS-Chem
grid. Additionally, we only focus on June, since there are only 1-3 hotspot observations for
each power plant during December.

Two examples of this comparison between both systems are shown in Figure 14. For the
ENEA power plant (upper panels in Figure 14), the IFS posterior emissions are within the prior
uncertainty, owing to the relatively high prior uncertainty and observation uncertainties.
GEOS-Chem posterior fluxes are largely unchanged with respect to the prior for most days of
the month. On some days, the assimilation results in a strong downward correction of GEOS-
Chem posterior emissions to within the IFS uncertainty range. For the Boxberg power plant
(lower panels in Figure 14), GEOS-Chem posterior emissions are largely unchanged with
respect to the prior on most days. Hotspot assimilations into the IFS leads to a large increase
in emissions, resulting in a better agreement with the GEOS-Chem posterior on days with
valid fluxes. The agreement between GEOS-Chem and the IFS hotspot assimilation
procedure on individual is encouraging, but more targeted experiments would be required to
obtain more quantitative understanding of the performance of both methods.
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Figure 14. Comparison of prior and posterior emissions between GEOS-Chem and the IFS-based
posterior flux assimilation procedure for two European power plants in June 2021. Left panels shows
the time series for this month (solid lines and shaded areas represent the daily mean and 10 range,
respectively). The right panels display the monthly mean of both prior and posterior emission estimates,
co-sampled with valid hotspot observations. Error bars indicate the standard deviation of the mean.
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5 Conclusion

This deliverable describes the methodology and implementation of the posterior flux
assimilation methodology (Bousserez, 2019) to apply posterior corrections to IFS inversion
results, as well as the further development of an Ensemble Kalman Filter inversion system in
GEOS-Chem.

The posterior flux assimilation methodology was first tested in a range of OSSE experiments,
in which synthetic observations are generated from the ensemble control member, perturbed
with an assumed uncertainty, and subsequently assimilated. This provided insights into the
dependence of posterior uncertainty on ensemble size and potential misrepresentations in the
assumed prior uncertainty. The ensemble-derived uncertainty is underestimated with respect
to the approximated true uncertainty for small ensemble sizes. Additionally, the inversion
approach cannot fully recover the posterior uncertainty starting from a wrongly specified prior
uncertainty. Correcting mis-represented prior uncertainties requires an adaptive prior
uncertainty tuning approach, which has been introduced as part of this deliverable.

The posterior flux assimilation methodology was tested by assimilating hotspot CO» emission
estimates, derived from TROPOMI NO, observations, into a posterior emission ensemble
using a total of 252 hotspot emission estimates for 17 power plants in the United States and
Europe. The hotspot assimilation algorithm results in reduced mismatch with the assimilated
observations. Additionally, we have presented case studies where assimilation of satellite-
derived hotspot CO; emissions improves the magnitude and temporal variability in posterior
emissions compared to power-plant-reported emissions.

The EnKF-based data assimilation clearly improves agreement between the model and
TROPOMI NO. observations, reducing flux uncertainties and correcting prior CO, combustion
fluxes across Europe. Northern and central Europe generally exhibit better prior—posterior
consistency and smaller normalized deviations, while southern and southeastern regions
require larger corrections, particularly during winter months. Posterior fluxes also show
pronounced day-to-day variability, likely reflecting gaps in observational coverage, uneven
constraints, and model-data mismatch uncertainties. Overall, the assimilation amplifies the
seasonal cycle, with increased posterior fluxes in winter and reduced fluxes in spring and
summer in several countries. Overall, these results highlight the advantage of the
parameterised offline NOx chemistry in GEOS-Chem, which enables an efficient assimilation
procedure without the need for computationally intensive full-chemistry ensemble runs.

Future developments to the hotspot emission assimilation methodology include
implementation of an adaptive prior uncertainty tuning approach based on cost function
evaluation, application to other species (e.g., methane and NOy) and implementation of log-
normal uncertainty distribution. A further element that requires investigation is the use of
hotspot emission assimilation on days without valid emission estimates (e.g. due to cloud
cover limiting the detection of emission plumes), e.g. by using assumptions on emission
persistence (Jervis et al., 2025). Further validation of hotspot emission estimates could be
performed based on power plant-reported emissions in other regions (e.g., Tang et al., 2020).
Additionally, the online implementation of this assimilation algorithm in the IFS requires
satellite observation filtering (to avoid double use of the same satellite observations in the
conventional 4D-Var assimilation and for the hotspot emission assimilation algorithm) and
including the updated emissions (after hotspot assimilation) in the IFS forward model. This
work is already underway as part of other activities within CAMS.

A recommendation for further work of the regional GEOS-Chem inversion system is to develop
multi-species inversions combining CO» and NO- observations, which are expected to further
constrain fluxes and improve spatial and temporal accuracy. Refinement of the CO2:NOy
emission ratio will also be necessary to improve results. Additionally, further validation using
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in situ NO2 networks and CO- observations, as well as exploration of other influencing factors
such as temperature and meteorology, could be carried out to better understand remaining
discrepancies and improve inversion robustness.
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