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1 Executive Summary 

The objective of this work is to investigate Solar Induced Fluorescence (SIF) data 
assimilation to consistently analyse soil moisture and vegetation variables to constrain NWP 
and the CO2MVS carbon fluxes in the ECMWF IFS. This work relies on observation operators 
and land data assimilation systems developments that were conducted in the IFS ECLand 
Land Data Assimilation System (ECMWF).  It is also supported by developments conducted 
in ISBA (MF), ORCHIDEE (CEA), and D&B (iLab/ULund), allowing to explore different 
methodologies with different levels of complexity to exploit SIF observations.  Data 
assimilation experiments were conducted in these four land surface models: ECLand, ISBA, 
ORCHIDEE, and D&B. This report presents the data assimilation approaches and preliminary 
results obtained in each system, guiding further developments of SIF data assimilation for 
potential application for the CO2MVS. 
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2 Introduction 

2.1 Background 

To enable the European Union (EU) to move towards a low-carbon economy and implement 
its commitments under the Paris Agreement, a binding target was set to cut emissions in the 
EU by at least 40% below 1990 levels by 2030. European Commission (EC) President von 
der Leyen committed to deepen this target to at least 55% reduction by 2030. This was further 
consolidated with the release of the Commission's European Green Deal on the 11th of 
December 2019, setting the targets for the European environment, economy, and society to 
reach zero net emissions of greenhouse gases in 2050, outlining all needed technological and 
societal transformations that are aiming at combining prosperity and sustainability. To support 
EU countries in achieving the targets, the EU and EC recognised the need for an objective 
way to monitor anthropogenic CO2 emissions and their evolution over time.  

Such a monitoring capacity will deliver consistent and reliable information to support informed 
policy- and decision-making processes, both at national and European level. To maintain 
independence in this domain, it is seen as critical that the EU establishes an observation-
based operational anthropogenic CO2 emissions Monitoring and Verification Support (MVS) 
(CO2MVS) capacity as part of its Copernicus Earth Observation programme.  

The CO2MVS Research on Supplementary Observations (CORSO) research and innovation 
project will build on and complement the work of previous projects such as CHE (the CO2 
Human Emissions), and CoCO2 (Copernicus CO2 service) projects, both led by ECMWF.  
These projects have already started the ramping-up of the CO2MVS prototype systems, so it 
can be implemented within the Copernicus Atmosphere Monitoring Service (CAMS) with the 
aim to be operational by 2026. The CORSO project will further support establishing the new 
CO2MVS addressing specific research & development questions. 

The main objectives of CORSO are to deliver further research activities and outcomes with a 
focus on the use of supplementary observations, i.e., of co-emitted species as well as the use 
of auxiliary observations to better separate fossil fuel emissions from the other sources of 
atmospheric CO2. CORSO will deliver improved estimates of emission factors/ratios and their 
uncertainties as well as the capabilities at global and local scale to optimally use observations 
of co-emitted species to better estimate anthropogenic CO2 emissions. CORSO will also 
provide clear recommendations to CAMS, ICOS, and WMO about the potential added-value 
of high-temporal resolution 14CO2 and APO observations as tracers for anthropogenic 
emissions in both global and regional scale inversions and develop coupled land-atmosphere 
data assimilation in the global CO2MVS system constraining carbon cycle variables with 
satellite observations of soil moisture, Leaf Area Index (LAI), SIF, and vegetation biomass. 
Finally, CORSO will provide specific recommendations for the topics above for the operational 
implementation of the CO2MVS within the Copernicus programme. 

 

2.2 Scope of this deliverable 

2.2.1 Objectives of this deliverables 

This deliverable presents the methodology and intermediate results from Task 4.3, which is 
dedicated to the SIF data assimilation developments and numerical testing to constrain land 
surface in the coupled IFS used for the CO2MVS.  

It uses the SIF observation operators developed in Task 4.1 as described in deliverables D4.1 
(First review and improvement of land surface forward operators for SIF and low frequency 
MW data) that was issued in December 2023, and D4.2 (final review and improvement of land 
forward operator for SIF and MW data) delivered in December 2024. 
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2.2.2 Work performed in this deliverable 

In this task we used pre-processed SIF observations from Sentinel-5p/TROPOMI from Task 
4.1. We also used observation operators described in Task 4.1 using neural network (NN) 
techniques and physically based forward models in four different surface models (ECLand, 
ISBA, ORCHIDEE, D&B). We used ORCHIDAS and D&B, and we developed the ECMWF 
ECLand and Meteo-France Land Data Assimilation Systems (LDAS) to assimilate SIF 
observations. We conducted numerical experiments assimilating SIF observations in these 
four systems.  

In this document, SIF data assimilation methods and results are presented.  

 

2.2.3 Deviations and counter measures 

There was deviation to the plan.  

 

2.3 Task 4.2 partners 

Partners  

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER 
FORECASTS 

ECMWF 

COMMISSARIAT A L' ENERGIE ATOMIQUE ET AUX 
ENERGIES ALTERNATIVES 

CEA 

METEO-FRANCE MF 

UNIVERSITY OF LUND ULUND 

 

 

3 Data 

The IFS-based CO2MVS assimilates the same observations as used for Numerical Weather 
Prediction (NWP). The aim of this work is to extend the use of those observations to constrain 
additional model variables that are relevant for the land carbon fluxes, and to develop the 
assimilation of existing observations that are not yet used, such as Solar Induced 
Fluorescence (SIF) observations. 

The ESA TROPOSIF product is derived from Sentinel 5-P TROPOMI observations in the 743-
758 nm near-infrared window (Guanter et al., 2021). The associated retrieval error is typically 
0.5 W·m-2·sr-1·m-2·μm-1, raising a relative uncertainty on the order of 30%. Daily estimates are 
used (SIF_Corr_743). They are based on a time and day-length correction factor following 
Frankenberg et al. (2011). The products generated in the context of the ESA funded project 
cover the period 2018-2021 and are available from https://s5p-troposif.noveltis.fr/data-
access/. Since, the retrieval scheme has been implemented on the ESA S5P-PAL data portal 
which generates pre-operational L2 and L2B products on a daily basis (https://data-portal.s5p-
pal.com/products/troposif.html). Gridded spatio-temporal binned (0.1°/8-day) estimates of 
these L2B TROPOSIF retrievals (SIF and vegetation indices) are being generated on a regular 
basis from 2018 onwards at LSCE (https://doi.org/10.14768/b391bda9-fdfb-40cb-9deb-
59b121a18cfb). 

 

 

https://data-portal.s5p-pal.com/products/troposif.html
https://data-portal.s5p-pal.com/products/troposif.html
https://doi.org/10.14768/b391bda9-fdfb-40cb-9deb-59b121a18cfb
https://doi.org/10.14768/b391bda9-fdfb-40cb-9deb-59b121a18cfb
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4 Methods 

4.1 ORCHIDEE modelling framework 

CEA worked on assessing the potential of space-borne SIF data to improve the space-time 
distribution of GPP simulated by the ORCHIDEE (Organizing Carbon and Hydrology In 
Dynamic Ecosystems) land surface model. The observation operator for SIF follows a 
process-based description of the leaf fluorescence and its integration at canopy level 
accounting for the canopy structure. A revised 2-flux version of SIF and photosynthesis 
modelling, in comparison to the one described in Bacour et al. (2019), is used. With a 4DVar 
assimilation framework (ORCHIDAS), we assimilated SIF retrievals from the Copernicus 
Sentinel-5p TROPOMI instrument (TROPOSIF product for a set of selected pixels at 0.1°/8-
day resolutions) and daily GPP data inferred from eddy-covariance flux measurements to 
calibrate the main parameters of ORCHIDEE related to photosynthesis and phenology. To 
assess the informational constraint brought by satellite SIF data on the model parameter, three 
assimilation experiments were conducted: one where only SIF data are assimilated, one 
where only GPP data are assimilated, and one where both data streams are combined. We 
analysed the improvements in the modelled GPP (using the parameters optimised for each of 
the experiments) by comparing with independent data at the site scale (in situ data) and at the 
pixel, regional, and global scales (data-driven estimates).  

4.1.1 Land surface model 

ORCHIDEE is a mechanistic land surface model (LSM) designed to simulate the fluxes of 
carbon, water, and energy between the biosphere and atmosphere (Krinner et al., 2005). It is 
a component of the Earth System Model developed by Institut Pierre-Simon Laplace IPSL-
CM. The model operates from local to global scale, representing the spatial distribution of 
vegetation using fractions of plant functional types (PFTs) for each grid cell. Currently 14 PFTs 
are used: https://orchidas.lsce.ipsl.fr/dev/lccci/orchidee_pfts.php. Recent developments were 
made for this study with both photosynthesis and fluorescence modules that now account for 
the partition between sun and shaded leaves within the canopy (Zhang et al. 2020). The 
fluorescence module, now following a 2-flux radiative transfer scheme, differs from that 
described in Bacour et al. (2019), which was based on a parametric emulator of the SCOPE 
model (van der Tol et al., 2009).  The calculation of chlorophyll fluorescence emission at the 
leaf level follows the FluorMODleaf concepts (Pedrós et al.,2010) and the integration of SIF at 
the canopy level follows a SAIL-like two-stream scheme (based on Yang et al., 2017). 

 

4.1.2 Data assimilation approach 

We use the ORCHIDAS Data Assimilation tool (https://orchidas.lsce.ipsl.fr/) (MacBean et al., 
2022; Bacour et al., 2023). The assimilation relies on a Bayesian framework with a global 
misfit function between model simulations and observational data, considering error 
covariance matrices and prior information. We use a Genetic Algorithm optimization approach 
(Goldberg, 1989), to iteratively minimise the misfit function (Bastrikov et al., 2018).  

Data assimilation experiments are conducted on a PFT-basis, against in situ GPP data and 
TROPOMI SIF retrievals for a collection of selected homogeneous grid cells (0.1°). Although 
the co-assimilation of these two variables is expected to prevent parameter overfitting, three 
assimilation experiments are conducted, with different dataset combinations as described 
above. In the following, only the results for Boreal Needleleaf Evergreen Forest PFT are 
presented (the co-assimilation for the other PFTs is in progress).  

The data used for assimilation and evaluation are presented below. 

https://orchidas.lsce.ipsl.fr/dev/lccci/orchidee_pfts.php
https://orchidas.lsce.ipsl.fr/
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4.1.3 Data 

Aside from TROPOSIF SIF data, in situ GPP data from FLUXNET are used for model 
calibration (data assimilation).  

For the evaluation of the model improvement following the three data assimilation 
experiments, we compare the model simulations to data-driven GPP estimates (FLUXCOM-
X-BASE (Nelson et al., 2024) and FluxSat (Joiner et al., 2018)). Using multiple reference 
datasets provides a more robust assessment of the model improvement. 

in situ GPP data 

Daily in situ GPP estimates from FLUXNET (Baldocchi et al., 2001; Pastorello et al., 2020) 
are assimilated. A particular effort has been dedicated to data cleaning (filtering inconsistent 
gap-filled data, while removing negative GPP values). Table 1 describes the main 
characteristics of the GPP data at the sites considered for data assimilation (11 sites) as well 
as for those used in evaluation (6 independent sites), and Figure 1 shows their location 
worldwide. 

Table 1: Characteristics of the eddy-covariance sites considered for the assimilation 
(blue) and evaluation (orange) of GPP. 

Site ID Latitude (°) 

Longitude 

(°) 

Main PFT 

Fraction Years Total years 

US-NR1 40.03 -105.55 0.9 1999-2014 16 

US-GLE 41.37 -106.24 0.8 2005-2014 10 

CA-Qfo 49.69 -74.34 0.9 2004-2010 7 

CA-Ojp 53.92 -104.69 0.9 2000-2005 5 

CA-Obs 53.99 -105.12 0.95 2000-2005 5 

CA-Man 55.88 -98.48 0.85 1998-2003 6 

RU-Zot 60.80 89.35 0.8 2002-2004 3 

FI-Hyy 61.85 24.29 0.9 1996-2019 24 

SE-Fla 64.11 19.46 0.85 1996-1998+2001-2003 6 

SE-Ros 64.17 19.74 0.85 2015-2020 6 

FI-Var 67.75 29.61 0.8 2016-2020 5 

US-Syv 46.24 -89.35 0.45 2001-2006+2012-2014 9 

CA-NS5 55.86 -98.48 0.7 2002-2005 4 

CA-NS6 55.92 -98.96 0.8 2002-2005 4 

SE-Svb 64.26 19.77 0.85 2014-2016+2018-2020 6 

FI-Sod 67.36 26.64 0.7 2001-2014 14 

FI-Ken 67.99 24.24 0.85 2018-2019 2 

 



 

CORSO  
 

D4.3  9 

 

Gridded SIF and GPP data 

For each of the 14 vegetation PFTs, we selected forty grid cells at 0.1° with the highest 
thematic homogeneity while ensuring a correct sampling of the global distribution for 
assimilation and evaluation. Figure 2 below shows the spatial distribution of these selected 
homogeneous grid cells:  20 grid cells being allocated for assimilation purposes and 20 for 
evaluation. The latitudinal profile shows a relatively homogeneous distribution across latitudes 
for both assimilation and evaluation grid cells. 

We have rebinned at 8-day/0.1° the daily averaged SIF retrievals of the TROPOSIF product 
(Guanter et al., 2021), over the period 2019-2022 (https://doi.org/10.14768/b391bda9-fdfb-
40cb-9deb-59b121a18cfb). Only observations passing the quality flag and associated with 
view zenith angles smaller than 40° and cloud fraction below 0.5 were considered.  

Data-driven GPP estimates at 0.1° from FLUXCOM-X-BASE (Nelson et al., 2024) and FluxSat 
(Joiner et al., 2018) over the period 2001-2021 are used for model evaluation. 

 

 

Figure 1: Location of the eddy-covariance sites considered for the assimilation of 
GPP data (blue) and for the evaluation (orange) 

 

 

Figure 2: Top) Map of the location of the 0.1° grid cells considered for the assimilation 
of TROPOSIF SIF data (blue) and for evaluation (orange) against SIF and data-driven 

GPP estimates; and bottom), latitudinal profile of the number of considered grid-cells. 

 

Model-data error 

The diagonal of the error covariance matrix on observations is populated by the root mean 
square difference (RMSD) between observations and model simulations using prior standard 
parameter values. For the co-assimilation experiment, we balance the misfit functions 
associated with SIF and GPP with respect to their respective number of observations.  

 

https://doi.org/10.14768/b391bda9-fdfb-40cb-9deb-59b121a18cfb
https://doi.org/10.14768/b391bda9-fdfb-40cb-9deb-59b121a18cfb
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4.1.4 Optimized parameters 

Prior to assimilation, we conducted a sensitivity analysis using the Morris (1991) method to 
identify the most influential parameters on SIF and GPP to be calibrated by data assimilation. 
The analysis was conducted both on the grid cells and over the eddy flux sites, with respect 
to both SIF and GPP simulations, considering the corresponding meteorological data and PFT 
fraction characterization. It is worth noting that the analysis for GPP on the two datasets 
provided consistent results. At the end, we chose to optimise 14 parameters for SIF and 10 
for GPP, affecting different processes as seen in Table 2 below. All parameters are optimised 
in the co-assimilation experiment. 

 

Table 2: Characteristics of the parameters optimised against SIF and GPP data. 

Parameter Description Prior 

values 

Variation range Observational 

constraint 

SIF GPP 

Photosynthesis 

VCMAX25 
Maximum carboxylation rate limited by 

Rubisco activity at 25°C (μmol·m-2·s-1) 
45 [33.75, 56.25] ✓ ✓ 

ASJ 
Entropy parameter offset for Jmax 

temperature dependence (J·K-1·mol-1) 
660 [495, 825] ✓ ✓ 

ASV 
Entropy parameter offset for Vcmax 

temperature dependence (J·K-1·mol-1) 
668 [501, 835] ✓ ✓ 

ARJV 

Offset for Jmax/Vcmax ratio temperature 

acclimation  

(μmol·e-1·m-2·s-1 / μmol CO2·m-2·s-1) 

2.59 [1.94, 3.238] ✓ ✓ 

E_JMAX Energy of activation for Jmax (J·mol-1) 49880 [37410, 62360] ✓ ✓ 

Phenology   

LEAFAGECRIT Critical leaf age (days) 910 [682.5, 1138] ✓ ✓ 

LAI_MAX Maximum leaf area index (m2·m−2) 4.5 [3.375, 5.625] ✓ ✓ 

Canopy Structure 

ALA Average leaf angle (°) 75 [55, 85] ✓  

CLUMPING Clumping index (-) 0.55 [0.5, 0.8] ✓ ✓ 

Allocation 

SLA Specific leaf area (m2·g−1) 0.00926 [0.006945, 0.01158] ✓ ✓ 

SIF & GPP models 

k_F Fluorescence relative rate constant (s-1) 0.1 [0.04, 0.11] ✓  
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a_psII Photosystem II absorption (-) 0.5 [0.375, 0.625] ✓ ✓ 

p1_NPQr NPQ reversible model parameter 1 (-) 0.94 [0.705, 1.175] ✓  

p2_NPQr NPQ reversible model parameter 2 (-) 5.15 [3.862, 6.438] ✓  

 

 

4.1.5 SIF observations and observation operator 

We use TROPOSIF weekly means to decrease the relatively high random error associated 
with individual retrievals, and to smooth directional effects, which are usually not modelled in 
land surface models. Using instantaneous values would also have meant managing the time 
of the acquisition in the model to get the correct corresponding time step for GPP. Regarding 
data assimilation in the ORCHIDEE land surface model, the minimization algorithms used to 
optimize model parameter values usually compute squared differences between model and 
observations, and they would be very sensitive to instantaneous large errors. This would 
require specifying variable observation/model errors (R matrix) with larger errors for “outliers”, 
which is still a difficult task. The linearity of the relationship between SIF and GPP usually 
breaks down at high spatial/high temporal resolution. Incorrect parameterizations of their 
respective temporal dynamics in the model may introduce some estimation bias if 
instantaneous data are assimilated. In addition, accounting for instantaneous data is 
associated with higher computational burdens (increased frequency of inputs/outputs, 
memory, etc.) which may become limiting when considering observations over many pixels. 
This is another incentive to work with weekly means. 

4.1.6 Numerical experiments  

In this sub-section we evaluate the model's initial performance (i.e. using the prior parameter 
values) through statistical comparisons between simulations and observations for each 
vegetation PFT as presented in the CORSO D4.2 report (https://www.corso-
project.eu/deliverables). The assessment is performed over the selected 40 homogeneous 
grid cells at 0.1°/weekly resolution and over the period 2001-2021. 

Figure 3 presents the boxplot distributions over the model PFTs of three metrics for both SIF 
and GPP - RMSD, bias, and coefficient of determination (R²) - computed between the prior 
model simulations and the evaluation datasets. We observe a generally consistent (mis)match 
between model and data across the various PFTs for both SIF and GPP variables (i.e. 
higher/lower errors in SIF simulation associated with higher/lower errors in modelled GPP). 
This result suggests that adjusting one of these variables (e.g. SIF) has potential to have a 
positive impact on the other (e.g. GPP). However, this is not the case for some PFTs (e.g., 
TrEBF or C4GRA), indicating where co-assimilation should be even more relevant. 

For Boreal Needleleaf Evergreen Forest (BoENF), the median SIF error is relatively low (about 
0.25 mW.m-2.sr-1.nm-1) compared to the median error across all PFTs (0.35 mW.m-2.sr-1.nm-1); 
the median error for GPP is about 3 gC.m-2.d-1 (with larger errors when considering 
FLUXCOM-X-BASE compared to FluxSat), which is slightly higher than the median value over 
all PFTs (2.4 gC.m-2.d-1). The high coefficient of determination for GPP (around 0.9) suggests 
that ORCHIDEE captures a variability consistent with that of the data-driven products; this is 
however not the case for SIF (R² about 0.5). 
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Figure 3: Boxplot of (top) Root Mean Squared Differences (RMSD), (middle) bias and 
(bottom) coefficient of determination (R²), for: (left) prior SIF (in mW.m-2.sr-1.nm-1) vs 
TROPOSIF observations over the period 2019-2022; (right) prior GPP (gC.m-2.d-1) vs 

FLUXCOM-X-BASE / FluxSat estimations over the period 2001-2021, over an ensemble 
of homogeneous pixels (0.1°). 

 

4.2 DALEC & BETHY and TCCAS 

 

This subsection presents the DALEC & BETHY (D&B) terrestrial biosphere model (Knorr et 
al., 2014) and the Terrestrial Carbon Community Assimilation System (TCCAS 
https://tccas.inversion-lab.com) around it. Both are open-source developments of a larger 
team. 

4.2.1 Land surface model 

The D&B model (Knorr et al., 2014) is based upon three interconnected sub-model 
components: (i) photosynthesis and autotrophic respiration, (ii) energy and water balance, and 
(iii) carbon allocation and cycling, including heterotrophic respiration. The first component 
includes a process-based description of uptake of CO2 via plant photosynthetic activity (gross 
primary production, GPP), regulated by temperature, light absorption across the canopy, and 
stomatal control, and of carbon loss from the respiration of live vegetation (RA, autotrophic 
respiration). The remainder, net primary production (NPP = GPP - RA), is then passed over 
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to the Carbon Allocation and Cycling component and distributed among the various carbon 
pools. The Energy and Water Balance component regulates the energy input to and output 
from the canopy in the form of radiative, latent and sensible heat exchange with the 
atmosphere, considering the hydrological status of the canopy and soil, as well as the plant 
transpiration. Components (i) and (ii) are based on BETHY (Knorr, 2000), and component (iii) 
on DALEC (Williams et al., 2005). 
 

4.2.2 SIF observations and observation operator 

The SIF observation operator has been described in detail in Knorr et al. (2024). Basically, we 
use the formulation of Gu et al. (2019), which is motivated by the direct link to the 
photosynthesis routines and its modular implementation fitting the overall D&B modelling 
strategy. The canopy layer SIF, Sn, is calculated as a function of mainly the electron transport 
in canopy layer n calculated by D&B’s photosynthesis component, and of the photon escape 
probability from the canopy which in D&B is calculated explicitly by the layered 2-stream model 
in the energy and water balance component (Quaife, 2024). As an extension to the model by 
Gu et al. (2019) in view of the anticipated calibration in a data assimilation scheme, we further 
introduce a scaling factor sSIF. This scaling factor compensates for large uncertainties in 
some of the constants needed to calculate Sn and in the spectral conversion from mol m−2s−1 
(total flux of photons into the hemisphere above the canopy for all wavelengths) as calculated 
by the model to Wm−2s−1nm−1sr−1 (energy flux units per steradian, per nano-metre of the SIF 
spectra), that is usually used for satellite measurements and in situ observations. For the 
conversion we use a SIF emission spectrum observed at the Hyytiälä site in Finland (Magney 
et al., 2019). The SIF spectrum was measured for four Scots pine trees at light level of 1200 
μmol m−2s−1 and then averaged. 

 

4.2.3 TCCAS 

TCCAS is a variational assimilation system that is set up for assimilation of a range of data 
streams linked to terrestrial carbon cycling. It assimilates all data streams in a single long 
assimilation window, which ensures conservation of carbon. The assimilation adjusts process 
parameters of the D&B model and of the observation operators. The calibrated process 
parameters can then be used to estimate terrestrial carbon fluxes and pools consistent with 
the assimilated observations. 
 

4.2.4 Numerical experiments 

Here we operate TCCAS for assimilation of only TROPOMI SIF observations into a seven-
year run from 2015 to 2021 with an assimilation window from 2017 to 2021, i.e. we allow two 
years of spin-up. Observations are assimilated at the time of the overpass. We perform an 
experiment for the ICOS field site Sodankylä. For validation, we use two independent data 
sets, GPP derived from eddy-covariance measurements and FAPAR derived by the JRC-TIP 
(Pinty et al., 2007) from MODIS broadband albedos (Pinty et al., 2011). 
 

 

4.3 ISBA modelling and LDAS-Monde data assimilation framework 

Météo France worked on SIF data assimilation over agricultural areas, at a global scale. The 
objective is to assimilate these observations in the ISBA land surface model using MF’s global 
Land Data Assimilation System (LDAS-Monde) tool. Observation operators developed in Task 
4.2 were used.  They are based on neural networks (NNs) trained with ISBA simulations and 
LAI observations from the PROBA-V satellite to predict the microwave signal. The globally 
trained NN-based observation operators (one NN for all grid cells) were implemented in LDAS-
Monde, which allows the sequential assimilation of backscatter observations (Corchia et al. 
2023).  
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4.3.1 Land surface model 

The version of the model that is used for this study can represent soil moisture, soil 
temperature, photosynthesis, plant growth and senescence. Phenology is driven entirely by 
photosynthesis, using a simple allocation scheme. Net leaf CO2 assimilation is used to 
represent the incoming carbon flux for leaf biomass growth. A photosynthesis-dependent leaf 
mortality rate is calculated. The balance between the leaf carbon uptake and the leaf mortality 
rate results in an increase or a decrease in leaf biomass. Leaf biomass is converted to LAI 
using a fixed value of specific leaf area (SLA) per plant functional type.  

 

4.3.2 SIF observations and observation operators 

The simulated LAI is flexible, and LAI observations can easily be used to correct the simulated 
LAI using a simple Kalman filter in the LDAS-Monde sequential data assimilation framework. 
Variables simulated by the model, such as soil moisture and soil temperature, can be used to 
train neural networks (NNs) able to simulate satellite observations such as SIF, brightness 
temperatures (TB) and radar backscatter coefficients (sigma0). Since the simulated LAI may 
be affected by strong biases due to the lack of representation of anthropogenic processes 
(e.g. crop rotation), satellite LAI observations are used during the NN training phase rather 
than modelled LAI. NN observation operators for SIF, TB and sigma0, need to be constructed 
before implementing the sequential assimilation of these quantities. Checking the ability of the 
sequential assimilation to improve the simulation of the observations is one way of ensuring 
that major model biases are not introduced into the observation operator. 

Here the NN operator as designed and used in this study, follows a feedforward architecture 
with two hidden layers with 128 neurons. The inputs are the LAI, the geographical coordinates 
and the day of year. More inputs can be added to reach better accuracy on the NN prediction 
of TROPOSIF (Bacour et al., 2019), but it was for us a trade off with its integration in the 
assimilation scheme. 

 

4.3.3 Simplified Extended Kalman filter (SEKF) 

Data assimilation process is finding our best control vector (i.e. our surface state) feasible 
according to a model and minimising the discrepancies toward observations and a prior 
estimate. The best control vector resulting from these processes is usually called analysis. 
Our analysis is done using a simplified extended Kalman filter. Thereafter the control vector 
will be referred to as x and the subscript will denote the temporal step. 

The analysis update equation at t=i of the Kalman filter from the background control vector at 
t=i-1 is as follows: 

xi
f  = Mi xi-1

f 

xi
a = xi

f  + Ki(yi
o - Hi(xi

f)) 

where exponent “a”, “f”, and "o" stand for analysis, forecast and observation, respectively. The 
operator M and H are respectively the forward model (i.e. ISBA-A-gs) and the linear 
observation operator that maps the control vector into the observation space. 

The Kalman gain Ki is defined at time t=i as follows: 

Ki = BMi
THi

T(R  + HiMiBMi
THi

T)-1, 

where B and R are error covariance matrices characterising the background and observation 
vectors. Superscript T indicates matrix transpose. These formulations assume the model and 
the observation operator to be linear. That is why, in our case we use an extended Kalman 
filter by using the tangent linear of the operator J of the composition of the observation operator 
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with the forward model instead of its non-linear counterpart. The extended Kalman gain is then 
defined as follow: 

xi
a = xi

f  + Ki(yi
o - Hi(xi

f)) 

Ki = BJi
T(R  + JiBJi

T)-1, 

where the tangent linear J (and his transposed JT), thereafter named Jacobians, are computed 
using finite differences. It is done by perturbing each component of the control vectors. 

To simplify the extended Kalman filter, the background error covariance matrix and the 
observation error covariance matrix are assumed to be diagonal and the covariances values 
are fixed (Mahfouf at al., 2009;  Albergel et al., 2010; Barbu et al., 2011;  Fairbairn et al., 2017;  
Bonnan et al., 2020; among others) for a given assimilation window of 24h. The initial state is 
given by the analysis made over the previous 24h assimilation window.  

 

4.3.4 Numerical experiments 

The neural network operator was trained over Europe at 0.1 degree of resolution over a period 
covering June 2018 up to May 2019 and tested over June 2019 to May 2020. As shown in 
Figure 4 below, the neural network tends to capture the large-scale features present in 
TROPOSIF observation data. The prediction is usually underestimating high TROPOSIF 
values. Nevertheless, both the Pearson correlation and the RMSE are good and consistent 
between the training and the test dataset (Table 3). 

 

Figure 4: Examples of neural networks predictions of TROPOSIF for the 2019, 1st of 
June. Left the neural network prediction, right the TROPOSIF values.   

 

Table 3: Performances of the MF neural network SIF observation operator for the 
training and test periods 

 

Dataset (Start -End) RMSE [mW.m-2.sr-1.nm-1] Pearson correlation 

Train - (06/2018-05/2019) 0.14 0.82 

Test - (06/2019-05/2020) 0.15 0.81 
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The LAI used from the training was linearly interpolated from the 10-days LAI -V1 product from 
the Copernicus Land Monitoring Service (CLMS). This way, the neural network was not 
sensitive to our land model. Yet, once integrated in our assimilation scheme, it will use the LAI 
resolved by the land model. 

To reduce the computational cost of the assimilation experiment, we’ve done it on a sub-
domain of 40 x 40 pixels. The tested area is over the Ebro basin in Spain. The simulation of 
the vegetation in this area is known to be complexified by uncharted irrigated croplands (see 
Figure 5) making it a good test for the impact of the assimilation of SIF.  

 

Figure 5: Most dominant PFT according to ECOCLIMAP-SG over the Ebro basin 
domain among the 12 PFT considered (i.e Bare soil, Bare rock, Snow and Ice, 

Deciduous Broadleaf Forest, Coniferous Needle Forest, Evergreen Broadleaf forest, 
C3 crops, C4 crops , Irrigated crops, C3 grassland , C4 grassland, Peats and 

Wetlands). 

 

 

4.4 ECLand modelling and data assimilation framework 

The work of ECMWF was dedicated to the implementation of the machine learning-based 
observation operators developed in Task 4.1 to assimilate SIF in the ECMWF LDAS to update 
the LAI climatology used to initialise coupled land-atmosphere forecasts in the IFS. The work 
was conducted at global scale with IFS cycle 49r1 implemented in operations in November 
2024. 

 

 



 

CORSO  
 

D4.3  17 

The methodological approach is presented by Figure 6. First SIF observations are assimilated 
in the LDAS to update the low and high vegetation LAI variables of ECLand, second the 
updated LAI variables are used in IFS coupled forecast experiments to evaluate their impacts 
on the prediction of carbon fluxes (GPP) and low-level meteorological variables (2m humidity 
and temperature, 10m winds). 

 

 

Figure 6: Schematic representation of the SIF data assimilation approach at ECMWF.  

 

 

4.4.1 Land surface model 

The ECMWF land-surface modelling system is ECLand. It is based on HTESSEL model (Tiled 
ECMWF Scheme for Surface Exchanges over Land incorporating land surface hydrology), 
that represents vertical processes and exchanges with the atmosphere (Balsamo et al., 2009; 
Boussetta et al., 2021). The vegetation representation in ECLand relies on a tile approach 
which accounts for dominant low (grassland, crop, shrubland) and high (forest) vegetation. In 
the current version of ECLand used in the IFS, vegetation parameters such as LAI are 
specified as seasonally varying climatological monthly mean maps in the ECMWF Numerical 
Weather Prediction (NWP) system. This climatology uses the latest Copernicus Global Land 
Service (CGLS) LAI dataset (over 1993-2019) from the CONFESS project (Boussetta & 
Balsamo, 2021) and has been shown to have a significant impact on the quality.  

One of the main weaknesses of the current approach is that the inter-annual variability of the 
vegetation is not considered. Inter-annual differences in vegetation can be large because of 
meteorological events such as droughts, above average rainfall and variations in 2 metre 
temperature. Results from the CoCO2 projects highlighted promising impact of Passive 
Microwave (PMW) Vegetation Optical Depth (VOD) data assimilation in the ECMWF LDAS 
[Calvet et al 2023, CoCO2 D3.4 Demonstrator systems for using remote sensing data (LAI, 
VOD, SIF) in online global prior fluxes for the CO2MVS prototype]. 
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Building-up on the COCO2 project, but using SIF observations instead of PMW VOD data, we 
use data assimilation to update the ECland LAI daily. Using this approach enables dynamic 
updates to the vegetation parameters to respond to inter-annual variations.  

 

4.4.2 SIF observations and observation operator 

To assimilate SIF in the ECMWF LDAS, we used the ML-based observation operators based 
on the XGBOOST (XGB) gradient boosted trees (Chen et al., 2016) which were developed in 
Task 4.1 and presented in the deliverable D4.2. The XGB models were trained over the 2019-
2020 period, tuned over 2021 and evaluated over 2022. Three models based on distinct sets 
of predictors were tested (Table 4). M1 and M2 rely on selected ECLand/IFS physical 
predictors while M3 was trained from the CGLS satellite LAI combined with spatial (latitude, 
longitude) and temporal (week of the year) localization variables. M2 is a reduced version of 
M1 in which the low impacts predictors, the fraction of high (CVH) and low (CVL) vegetation, 
were removed. 

 

Table 4: Predictors of the ML-based observation operators evaluated in this work. SM 
is the soil moisture of the top soil layer (7 cm), SM-1m is the root-zone soil moisture 

within 1m of soil, ST is the soil temperature of the top soil layer, T2M and D2M are the 
2m temperature and dewpoint temperature, CVH and CVL are the fractions of high and 

low vegetation respectively, SWDOWN is the short-wave downwelling radiation. 

 

Model Vegetation Atmospheric 

forcing 

Surface 

conditions 

Localization in 

space and time 

M1 LAI, CVH, CVL, SWDOWN, T2M, 

D2M 

SM, SM-1m, 

ST, 

No 

M2 LAI SWDOWN, T2M, 

D2M 

SM, SM-1m, 

ST, 

No 

M3 Satellite LAI None None Time, latitude, 

longitude 

 

 

Results from Task 4.1 show that while all the models accurately predict SIF at global scale, 
M3 has the highest performance scores (see D4.2 for more details).This work further 
evaluates these models by testing them in the ECMWF LDAS, and it evaluates their impacts 
on the LAI increments produced by the data assimilation system. 

 

4.4.3 ECMWF Simplified Extended Kalman Filter 

IFS cycle 49r1 SEKF 

The ECMWF LDAS is composed of several components for the screen-level parameters (2-
m temperature and relative humidity), snow, and soil moisture, soil temperature, and snow 
temperature (de Rosnay et al., 2022). The screen level analysis and the snow analysis are 
conducted using a 2D-OI (2-Dimensional Optimal Interpolation) and the soil moisture analysis 
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is conducted using a simplified Extended Kalman Filter (SEKF) approach. The soil 
temperature and snow temperature analyses are conducted using a 1D-OI. The ECMWF 
LDAS runs twice per day using 12-hour data assimilation windows.  

In this study we use the LDAS in offline mode (Rodríguez-Fernández et al, 2019). The LDAS 
reads atmospheric forcing from ERA5 (Hersbach et al, 2020). The SEKF is run and the land 
surface analysis produced is passed to the land surface forecast model ECLand. This has the 
disadvantage that there is only a one-way coupling between the atmosphere and the land but 
allows for developments to be tested at low computing cost for multi-year periods before being 
implemented in the weakly coupled IFS LDAS. 

The SEKF analyses 3 layers of soil moisture (0-7 cm, 7-28 cm, 28-100 cm) using the 
aforementioned pseudo-observations of 2 metre temperature and relative humidity in 
combination with surface soil moisture observations from the Advanced Scatterometer 
(ASCAT) instrument onboard the MetOp series of satellites. The analysis is calculated using 
the Kalman filter equation:  

xa = xb + K (y - H(xb))          (4.1) 

K = BHT (R + HBHT)-1         (4.2) 

where xa is the analysis, xb is the background, y are the observations, H is the observation 
operator, H contains the Jacobians from the ensemble of data assimilations (EDA) to link the 
model variables to the observed variables, B is the background error covariance matrix and R 
is the observation error covariance matrix.  

Updated SEKF with SIF assimilation 

The objective in CORSO is to assimilate SIF to update the low and high vegetation LAI 
climatology variables of ECLand at a daily timestep (step 1 in Figure 6). 

The smoothed 8-day SIF observations were resampled at a daily time step assuming constant 
daily value within the native 8-day period of the TROPOSIF product and transformed into GRIB 
files which were interfaced with the ECMWF LDAS. Quality control and removal of 
unfavourable surfaces (snow, frozen soil, orographic regions, water bodies) were applied to 
the SIF observations prior to their assimilation. 

The SIF observation was added in the SEKF observation vector, and the control vector was 
appended to include the total LAI variable. The finite difference method was used to compute 
the Jacobian of SIF with respect to LAI. At this stage, the SIF assimilation can only update LAI 
and the Jacobian of SIF with respect to soil moisture was set to zero. The LAI increments, 
namely the difference between the updated LAI and the LAI climatology used as the model 
background, produced by the SEKF are partitioned into low and high vegetation LAI according 
to the fractions of low and high vegetation, respectively. The analysis is performed only for the 
00z data assimilation window to ensure a single daily update of LAI. The updated LAI values 
for low and high vegetation are used subsequently as input LAIs, instead of the climatology, 
of the coupled land-atmosphere forecasts. 

 

4.4.4 ECMWF global LDAS Numerical experiments  

Table 5 presents the ECMWF LDAS experiments which were conducted with the three ML-
based observation operators presented in Table 4. Two additional experiments (LDA4 and 
LDA5) were run to test different values of the background and observation errors. The 
experiments were performed over the 2022-2023 period. Evaluation results for the year 2022 
are presented in this report. 

An intercomparison of the LAI increments produced by each experiment is conducted to 
characterize the impacts of using different sets of predictors in the observation operators on 
the SIF assimilation. The updated LAI is evaluated against the CGLS LAI dataset based on 
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SENTINEL-3/OLCI satellite observations. Global maps of temporal correlation and RMSE are 
computed between 1) the updated LAI and the satellite LAI and 2) the LAI climatology and the 
satellite LAI. The difference in correlation and RMSE between 1) and 2) are used to assess 
the increments produced by each DA configuration. 

 

 

Table 5: List of the ECMWF LDAS SIF data assimilation experiments 

 

 

4.4.5 ECMWF Coupled NWP experiments 

The updated LAI produced by the LDAS data assimilation experiments were used instead of 
the default LAI climatology in IFS forecast (fc) experiments. The fc experiments were 
conducted over summer 2022 (from 01/06/2022 to 31/08/20222) and over winter 2022-2023 
(from 01/12/2022 to 28/02/2023). Separate IFS experiments were conducted for each of the 
LDA experiments listed in Table 4.5. For each simulation period a control experiment based 
on the default LAI climatology was performed. 

The impacts on NWP forecasts (low-level meteorological variables: 2m temperature and 
humidity and 10 m wind) are assessed against the operational analysis (IFS cycle 49r1) 
considered here as a reference. The impact on the GPP forecast is assessed by comparison 
with the simulated GPP from the control experiment. At the time of this report, the 
FLUXCOM dataset was not available for the year 2022. The comparison against FLUXCOM 
will be conducted in the final report. 

 

5 Results 

5.1 Impact of SIF data assimilation in ORCHIDEE 

We illustrate the informational constraint provided by space-borne SIF retrievals on GPP 
simulations with ORCHIDEE for the Boreal Needleleaf Evergreen forest PFT. 

To assess the impact of the different assimilation experiments on model performance for 
BoENF, we compare the prior and posterior simulations against independent observations at 
multiple scales. The evaluation focuses on: 1) mean seasonal cycles (Figure 7), comparing 
results from the three assimilation experiments (SIF-only, in situ GPP-only, and SIF-GPP) for 
20 independent grid cells (against TROPOSIF data as well as the data-driven GPP estimates 
from FluxSat and FLUXCOM-X-BASE), and 6 independents FLUXNET sites for GPP; 2) the 
boxplots of the RMSD between model simulations and the several datasets calculated for 
each pixel / site (Figure 8). 

Experiment 

name 

ML model 

predictors 

Background 

LAI error 

standard 

deviation 

(unit m2 m-2) 

SIF Observation error 

standard deviation 

(unit mW m−2  nm−1sr−1) 

LDA1 M1 0.4 0.1 

LDA2 M2 0.4 0.1 

LDA3 M3 0.4 0.1 

LDA4 M2 1 0.1 

LDA5 M2 1 0.05 
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As mentioned previously, prior SIF and GPP simulations overestimate the corresponding 
observations. All three data assimilation experiments significantly improve for the two 
variables, as quantified by the RMSD (decreasing of the values) and R² (values increasing). 
One important result is that the assimilation of SIF data only leads to an improvement in GPP 
(RMSD reduction of 32% against in situ data, 65% against FLUXCOM-X-BASE and 50% 
against FluxSat) which is of the same magnitude as when in situ GPP data are assimilated 
(RMSD reduction of 31% against in situ data, 67% against FLUXCOM-X-BASE and 49% 
against FluxSat). Slightly greater improvements observed when SIF is assimilated compared 
to the GPP-only case can be explained by the higher number of optimized parameters. 
Although the assimilation of in situ GPP data positively impacts the simulated SIF, the 
optimized model still overestimates the TROPOSIF data. The co-assimilation of SIF and GPP 
results in the highest model-data agreement (RMSD reduction wrt GPP of 33% against in situ 
data, 66% against FLUXCOM-X-BASE and 53% against FluxSat), although it is only slightly 
higher than when SIF or GPP data are assimilated alone.  

For this BoENF PFT, differences between model simulations and observations remain even 
after calibration. For SIF, the assimilation of SIF data primarily corrects the simulated 
magnitude during the growing season, while leading to an underestimation of SIF (with respect 
to TROPOSIF) during the winter and spring months. Data assimilations also mostly impacts 
the magnitude of the simulated GPP without correcting its seasonal pattern. ORCHIDEE 
simulates an earlier peak of GPP (early July) compared to in situ GPP data (mid-July) and 
data-driven estimates, even after the various calibrations. Different patterns in model-data 
agreement are seen whether data-driven data (at 0.1° resolution) or in situ data are 
considered: while ORCHIDEE still overestimates FLUXCOM-X-BASE and FluxSat over the 
whole seasonal cycle, an underestimation of GPP is observed at the site scale after the peak 
of the growing season (starting from early July) up to October. 

Despite the remaining model-data discrepancies, the study has highlighted the strong 
constraint provided by space-borne SIF data within our modelling and data assimilation 
frameworks, which significantly improves the temporal dynamics of GPP for BoENF. These 
preliminary results highlight the potential of SIF observations for the CO2MVS system. The 
same assessment for the other PFTs of ORCHIDEE is ongoing. 

 

5.1 SIF data assimilation into D&B 

The assimilation of TROPOSIF in D&B improves the fit to the SIF observations (Figure 9). 
Figures 10 and 11 present evaluation against two independent data sets of GPP derived from 
eddy covariance measurements, and FAPAR derived by the JRC-TIP (Pinty et al., 2007) from 
MODIS broadband albedos (Pinty et al., 2011), respectively. Figure 10 shows a reduction of 
GPP RMSE by 7% from 2.242 10-5 gC/m2/s for the prior to 2.095 10-5 gC/m2/s for the posterior 
through improved amplitude and seasonality, earlier start and later decline in productivity. In 
Figure 11, results show a reduction of FAPAR RMSE by 45% from 0.479 for the prior to 0.262 
for the posterior through improved amplitude, in particular in spring.  
Owing to the long assimilation window and to the transfer of information through the calibrated 
process parameters, the assimilation also improves the fit against the independent 
observations in the year 2017, i.e. before the availability of the SIF product that was 
assimilated. RMSEs have been reduced for both independent observational data types (~7% 
for GPP and ~45% for FAPAR). 
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Figure 7: Compared mean seasonal cycles of SIF (top) and GPP (middle and bottom) 

between evaluation observation datasets and model simulations performed with the 

prior and optimized parameters (for the three data experiments). For SIF, the 

assessment is performed for 20 independent grid-cells; For GPP, the same grid cells 
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are considered (middle) together with in situ data (bottom). RMSD and determination 

coefficients are determined with respect to the mean seasonal cycles.  

 

 

 
Figure 8: Boxplots of the RMSD between model simulations and the different datasets 

(TROPOSIF data as well as FLUXCOM-X-BASE and FluxSat GPP estimates for 20 

independent grid-cells, as well as independent in situ data for GPP) for the different 

cases (prior model parameters and optimized values following the three data 

assimilation experiments). 

 

 

 
 

Figure 9: SIF simulated with D&B prior (red) and posterior after assimilation of 
SIF (blue), along with observational TROPOSIF product (green) and its 

uncertainty (black). 
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Figure 10: GPP simulated with D&B prior (red) and posterior after assimilation of 
SIF (blue) and GPP derived from eddy covariance measurements (green). 

 

 

Figure 11: FAPAR simulated with D&B prior (red) and posterior after assimilation 

of SIF (blue) and retrieved by JRC-TIP (green). 
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5.2 SIF data assimilation in LDAS-Monde  

5.2.1 Baseline and experiments 

To evaluate the benefit from assimilating TROPOSIF, several experiments are run. One with 
no assimilation (i.e. Open-Loop), one with the assimilation of LAI300 (Fuster et al 2020) which 
will represent the “state-of-the-art” for vegetation monitoring, one that assimilate TROPOSIF 
and one that assimilate both TROPOSIF and LAI300. As a reminder, the NN used to assimilate 
SIF was trained on CLMS LAI-V1 and not LAI300 and on the same grid resolution. The 
assimilation experiments cover from January 2018 to December 2020. 

The evaluation will be done considering two indicators, the improvement on the RMSE wrt LAI 
observed by PROBA-V and the improvement on the correlation. 

 

5.2.2 Evaluation on LAI monitoring 

The open-loop estimation of LAI cannot predict changes due to anthropogenic factors such as 
agricultural practices (i.e. harvesting season, heavy irrigation, …) like the ones in the Ebro 
basin around the centre of the domain. This can partially be corrected by assimilating satellite 
LAI products, but their temporal coverage is very low. In contrast, the TROPOSIF product, 
which is available daily, can constrain day-to-day LAI variations. In the TROPOSIF data 
assimilation experiment, LAI is directly updated as it is the only input of the observation 
operator, in addition to the structural parameters (DOY,lat, lon). 

Figure 12 shows monthly mean LAI map from the open loop experiment (left), from the 
TROPISIF data assimilation experiment (middle) and their difference, from July 2018 (top) to 
December 2018 (bottom).  It shows that, compared to the open loop experiment, the 
TROPOSIF data assimilation experiment increases LAI in the irrigated area around the Ebro 
basin, while it reduces it in other areas.  
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Figure 12: Monthly mean comparison of LAI for the open-loop experiment and the 
assimilation of TROPOSIF for the Ebro basin. From left to right, the averaged LAI for 

the Open-Loop, the averaged LAI for the Analysis and the difference between the two, 
each month from July (top) to December (bottom) 2018.  

 

The increase of LAI in the Ebro basin is similar to what we can expect by assimilating a CLMS 
LAI product. Yet, as it is presented in Figures 13-14 below, the assimilation of LAI300 is 
decreasing, by locally up to 2 m2.m-2 , LAI RMSE on the whole domain compared to the open-
loop experiment, while the assimilation of SIF has overall less impact. In case of a co-
assimilation of SIF with the LAI300, the addition of SIF decreases further the RMSE, especially 
on deciduous forest of the north of the Pyrenees. These results indicate that the assimilation 
of TROPOSIF only has a relatively neutral impact, but the co-assimilation of TROPOSIF and 
LAI have complementary impact to overall improve LAI over the study area.   
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Figure 13: Impact of TROPOSIF data assimilation (left), combined TROPOSIF and 
LAI300 data assimilation (middle) and difference between TROPOSIF and combined 

data assimilation (right), expressed as LAI RMSE difference with the open loop 
experiment, against PROBA-V LAI.  

 

 

Figure 14: Times series for a given pixel in the irrigated area, showing from top to 
bottom, SIF, daily cumulated evapotranspiration, soil wetness at root level, daily 

cumulated GPP and LAI, for the open loop experiment (blue), the combined LAI300 
and TROPSIF data assimilation experiment (red), and observations (green). 

 

On this specific pixel, the period where the fields are irrigated along the late summer are clearly 
visible, leading to increases on the LAI and the SIF and drier soil. The behaviour of the analysis 
timeseries in “shark teeth” shows the 10 periods of the LAI300 synthesis assimilate while the 
small variation in between and partially correcting the deviation towards the open loop solution 
are done by TROPOSIF observations.  

Overall, the assimilation of TROPOSIF in addition to a usual LAI product improves the 
correlation with the different observations even in areas where anthropization is high and 
providing significant changes in the fluxes like the GPP or the evapotranspiration. 
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The assimilation of TROPOSIF benefits slightly to the LAI monitoring, but less than 
assimilating a LAI product. The best configuration found is to co-assimilate TROPOSIF with a 
LAI 10 days synthesis.  

 

5.2.3 Discussion on the uncertainties 

SIF daily products are known to be noisy, with in the case of the TROPOSIF product, 
uncertainty values around 30%. In addition, neural network observation operators 
approximate TROPOSIF observation with an RMSE of about 0.1 mW.m-2.sr-1.nm-1 and a 
relative error of the order of 20% or above.  These uncertainties need to be accounted for in 
the data assimilation system. The use of a flat SIF observation error of for example 0.1 mW.m-

2.sr-1.nm-1 would be consistent with the product RMSE, but it does not account for observation 
operator uncertainties and it is expected to be not suitable for large values of SIF which are 
associated to larger uncertainties. For LAI data assimilation, we tested observation errors 
ranging from 5% to 40% (not shown) with best results obtained for LAI observation errors of 
20% which is retained for this study.  For SIF, we tested several configurations using either 
flat observation error of 20%, or gradual increase of the error relative to SIF values from 0.1 
mW.m-2.s-1.nm-1 for SIF lower than 0.5 mW.m-2.s-1.nm-1 and of 20% for SIF values larger than 
this threshold. As it is illustrated in Figure 15, this configuration (purple line) provides overall 
more consistent improvements in LAI (except in summer 2018) than using flat SIF errors (cyan 
and red lines). These results demonstrate the feasibility and the relevance of SIF data 
assimilation.  Further work will be conducted to refine the error specification in the data 
assimilation system following the approach of Desroziers et al., (2005). 

 

 

Figure 15: Differences in LAI RMSE over the whole domain between data assimilation 
experiments the open loop experiment, from January 20218 to December 2019. The 

cyan and red lines show results using constant observation error of 20% for SIF only 
and combined SIF and LAI data assimilation, respectively.  The green and purple lines 
show results with relative observation error as explained in the text, for LAI only and 

combined SIF and LAI data assimilation, respectively. 
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5.3 SIF data assimilation in the IFS ECLand  

5.3.1 LAI increments 

All experiments produced low magnitude of LAI increments (Figures 16 and 17) within the 
range of -0.3 m2/m2 to 0.3 m2/m2. Similar level of magnitude was reported in the Météo 
France regional study. The LAI increments show consistent spatiotemporal patterns such as 
the greening of low vegetation in the Sahel region and in Europe in April (Figure 16). High 
vegetation increments are positive over the Amazon and part of the Central Africa rainforest 
(Figure 17). Boreal forest displays both positive and negative increments in July depending 
on the region. Spurious low vegetation LAI increments are obtained over central Australia in 
January where the SIF observation operator was associated with larger uncertainties (CORSO 
report 4.2).  

  

Figure 16: 2022 Monthly mean maps of low vegetation LAI increments produced from 
experiment LDA2. 

  

Figure 17: 2022 Monthly mean maps of high vegetation LAI increments produced from 
experiment LDA2. 
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5.3.2 Observation operators comparison and evaluation against satellite LAI 

Figure 18 shows LAI increments obtained for January (a) and July (b) for all the ECMWF LDAS 
experiments presented in Table 5. It shows that the use of different sets of predictors in the 
ML-based observation operators leads to contrasted spatial patterns of LAI increments. While 
the LDA1 and LDA2 experiments conducted with the M1 and M2 ML models trained using the 
IFS model fields (see Table 4) provide consistent spatial patterns of both positive and negative 
increments, the LDA3 experiment based on the model M3 which uses latitude, longitude, time 
and the satellite LAI as predictors, leads to widespread negative LAI increments, consistent 
with results previously obtained in CoCO2 project using VOD data assimilation in ECLand 
(Calver et al., 2023). LDA4 and LDA5 show similar maps of increments as LDA2 because they 
are based on the same observation operator M2, however the magnitude of the increment is 
amplified by the higher background error in LDA4 and the lower observation error in LDA5. 
Although M1 and M2 rely on similar sets of physical predictors, the lack of low and high 
vegetation fractions in LDA2 produces larger positive increments over the Amazon, North 
America and Europe. 

 

5.3.3 Evaluation against CGLS LAI 

Figure 19 illustrates the impact of SIF DA expressed in terms of correlation differences (with 
DA minus without DA) between ECLand LAI and CGLS LAI for 2022.  It shows that the impact 
of SIF data assimilation is generally limited to specific regions. This limited impact in most of 
the regions for all the experiments (green areas in Figure 19) is expected given that the LAI 
climatology used as background in the data assimilation experiment is highly correlated with 
the GCLS LAI (correlation frequently above 0.85) since it is derived from the same satellite 
dataset acquired over a different period. Largest impact for all the experiments is obtained in 
the Amazon, Western Australia, Southern Argentina and Western USA where the correlation 
is decreased. The Figure shows that LDA3 exhibits largest degradations in terms of correlation 
over tropical forests. It shows relatively large impact on correlation values over desertic areas 
in Australia in areas. These results need to be taken with care due to artifacts in the correlation 
metrics in the absence of temporal variability.  

a)  January 

 
b)  July 

 
Figure 18: 2022 January (a) and July (b) mean of total LAI increment maps produced 

by each LDA experiment. 
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The impact of SIF DA on LAI RMSD is shown in Figure 20. It shows that LDA3 exhibits larger 
impact of SIF DA on LAI RMSD than the other experiments. It leads to larger increase in 
RMSD over tropical forests than the other experiments, particularly over the Amazon. LDA3 
also indicates widespread improvements in non-tropical forest areas of South America and 
Africa, as well as part of the US and Europe. No impact is observed in terms of RMSD over 
Australia which is consistent with very low LAI increments over Australia for LDA3 (Figure 18). 
Compared to LDA3, the changes in RMSD are of less amplitude and for smaller areas for the 
experiments LDA1,2,4,5. Areas presenting largest degradations for these experiments mainly 
concern semi-arid and sparse vegetation regions (e.g. grassland in Central and Western 
Australia, Somalia, Sahel, Southern USA) as well as some structures in the Amazon that could 
be related to deforestation. LDA 2,4,5 display areas of significant improvement (reduction of 
RMSD) over Northern Eurasia and scattered regions in North and South America, central 
Europe, Eastern and Southern Australia. Besides, they show similar spatial patterns of 
difference in RMSD because they are based on the same ML-observation operator M2. The 
changes are however amplified in LDA4 and LDA5 by the use of a lower observation error and 
higher background error.  

 

Figure 19: Impact of SIF DA (Table 5) shown as correlation differences with vs without 
DA, between ECLand LAI and CGLS LAI for 2022.  
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Figure 20: Impact of SIF DA (Table 5) shown as RMSD differences with vs without DA, 
between ECLand LAI and CGLS LAI for 2022.  

 

 

5.3.4 Impact on 2m temperature and GPP forecasts 

As illustrated by Figure 21, the updated LAI from the SIF DA has a neutral impact on the 
prediction of 2m temperature.  

Figure 22 shows that the use of the updated LAI resulting from SIF data assimilation induces 
changes in the IFS in GPP over tropical rainforests in Africa and Amazon, North America and 
Europe. The magnitude of those changes is low and no clear patterns of increase or decrease 
in GPP are observed. 

The evaluation on NWP and GPP forecasts presented here concerns a limited period for one 
experiment from Table 5. Further evaluations over both winter and summer periods will be 
conducted for all the experiments in the next report. 
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Figure 21: Difference between RMSE of 2m temperature forecast from the updated LAI 
(LDA2 experiment) and RMSE of 2m temperature forecast from the LAI climatology for 

June 2022. 

 

Figure 22: Difference in GPP forecast (24 h accumulated flux) between an IFS 
experiment with the updated LAI from LDA1 experiment and a control IFS experiment 

based on the LAI climatology for summer 2022. 
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6 Conclusion 

The objective of this work was to investigate Solar Induced Fluorescence data assimilation to 
consistently analyse soil moisture and vegetation variables to constrain NWP and the 
CO2MVS carbon fluxes in the ECMWF IFS. This work presented here relies on observation 
operators (D4.2) and land data assimilation systems developments that were conducted in the 
IFS ECLand Land Data Assimilation System (ECMWF). Developments in the IFS have been 
supported by work conducted in other models of various degrees of complexity and using 
different modelling and data assimilation approaches: ORCHIDEE (CEA), and D&B 
(iLab/ULund), and ISBA (MF), allowing to explore different methodologies to exploit SIF 
observations.  

Results from ORCHIDEE highlighted the strong constraint provided by space-borne SIF data 
within their modelling and data assimilation frameworks, which significantly improves the 
temporal dynamics of GPP for Boreal NeedleLeaf Evergreen Forest. The same assessment 
for the other PFTs of ORCHIDEE is ongoing. Results of SIF data assimilation in the D&B 
model improves the fit to the SIF observations and to two independent data sets of GPP and 
FAPAR. In comparison, results in NWP compatible models such as ISBA and ECLand-IFS 
showed a more limited impact of SIF data assimilation. In the ISBA model, results of 
experiments at the regional scale over the Ebro basin demonstrated that the assimilation of 
TROPOSIF, in addition to LAI, improves the correlation with the different observations. Results 
showed that it is the case even in areas where anthropisation is high and providing significant 
changes in the fluxes like the GPP or the evapotranspiration. 

The work conducted in the IFS at the global scale demonstrates the capability to analyse LAI 
by assimilating SIF satellite observations in the ECMWF LDAS. The comparison of distinct 
ML-based observation operators shows the impact of the set of predictors on the assimilation 
results. While the use of latitude, longitude and satellite LAI as predictors leads to the most 
accurate SIF prediction, the resulting LAI increments show mixed results with improvements 
over Europe and degradation over tropical forests. These results will be further investigated 
in the last year of the project to understand the sources of these spurious increments and 
implement appropriate solutions to filter them out. The observation operators based on the 
IFS physical predictors provide more realistic spatiotemporal patterns of low and high 
vegetation increments. A better agreement with the satellite LAI is mainly observed over 
Northern Eurasia and scattered regions in North and South America, central Europe, Eastern 
and Southern Australia. Lower performances are obtained over tropical rainforest (Amazon) 
and semi-arid/sparse vegetation regions where the prediction of SIF by the ML observation 
operator is more uncertain (report CORSO D4.2. Besides, the magnitude of the produced 
increments is too low to have an impact on NWP and carbon flux forecast. A possible reason 
for this is the lack of sensitivity of the observation operator to the analysed variable (LAI). An 
important lesson-learned from this work is that the evaluation of the prediction performances 
of the observation operator is not sufficient. The objective is not to develop an emulator of SIF 
but an observation operator that can be used in the data assimilation system to predict the 
model-counterpart of the SIF satellite observation. Testing the observation operator in the DA 
system is paramount to verify that it provides enough sensitivity to the analysed variable (here 
LAI). The next steps will consist in (1) enhancing the sensitivity of the observation operator to 
LAI by testing other model architectures (e.g. feedforward neural network), (2) tuning the 
observation and background errors; (3) implementing the cross correlation between 
vegetation variables and soil moisture to produce coupled soil moisture and LAI increments; 
(4) evaluate the GPP forecast using independent reference products. 

To summarise, this report shows rather good performance of SIF data assimilation in the two 
most advanced systems (ORCHIDEE and D&B) using physical observation operators. In 
contrast, relatively neutral results are obtained with the simpler models ISBA and ECLand 
which use NN observation operators. Compared to ISBA and ECLand, ORCHIDEE and D&B 
rely on complex physically based surface models with a comprehensive representation of 
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processes related carbon cycle. They use data assimilation to update model parameters, with 
long (up to pluri-annual for D&B) DA windows to fully exploit the information from SIF 
observations. For practical reasons such models and data assimilation configurations are not 
applicable for global near-real time operational applications. ISBA and ECLand rely on state-
of-the-art land surface models used for NWP, using relatively simple carbon cycle 
representation, daily or sub-daily assimilation windows, and observation operators using 
machine learning approaches in line with the level of complexity of these land surface models.  
Preliminary results presented here with ISBA and ECLand show limited impact, but they 
demonstrate for the first time the proof of concept of SIF data assimilation in this type of 
models.  They show interesting features and promising results with both systems, with high 
complementarity with LAI assimilation demonstrated in ISBA, and LAI increments obtained 
with SIF for one configuration of the observation operator, consistent with those obtained in 
CoCO2 with VOD data assimilation. Further improvements planned in the observation 
operators and data assimilation settings as discussed above will consolidate the approach for 
global NRT application and potential usage in the CO2MVS. 
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