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1 Executive Summary 

This work has been done as part of WP2, which focuses on the use of co-emitted species to 
better estimate anthropogenic emissions in the future CO2MVS capacity. The anthropogenic 
signal from satellite observations of NO2 is generally much clearer than that of CO2.  
 
This report contributes to the objectives of WP2 with a methodology developed for a chemistry 
scheme for light-weight modelling of NO2. Specifically, random forest regression models were 
developed to determine the NOx chemistry net rate of change and the NO2:NO ratio. These 
models were trained on GEOS-Chem 0.25°x0.3125° resolution data centred on mainland 
Europe, for the year 2019. The models perform very well when tested on unseen modelled 
data for 2019 with emission perturbations applied (R2>0.95 for NOx chemistry, R2>0.99 for 
NO2:NO ratio). In addition, a reasonable performance was found when testing on the unseen 
year, 2021 (R2>0.79 for NOx chemistry, R2>0.92 for NO2:NO ratio). We find these prediction 
models can reproduce NO2 columns with negligible deviation from a GEOS-Chem full-
chemistry model output. The model reconstruction error on NO2 is found to be smaller than 
the TROPOMI NO2 column precision in 99.98% of reconstructed data points.  
 
This work lays the foundation for a Ensemble Kalman Filter based NOx:CO2 inversions that 
we will later perform using the regression-based GEOS-Chem models presented here. 
Additionally, the methodologies described in this report will be applied to the Integrated 
Forecasting System (IFS) model with an incremental 4D-Var algorithm for use in multi-scale 
global IFS inversion analysis (D2.7).  
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2 Introduction 

2.1   Background 
To enable the European Union (EU) to move towards a low-carbon economy and implement 
its commitments under the Paris Agreement, a binding target was set to cut emissions in the 
EU by at least 40% below 1990 levels by 2030. European Commission (EC) President von 
der Leyen committed to deepen this target to at least 55% reduction by 2030. This was further 
consolidated with the release of the Commission's European Green Deal on the 11th of 
December 2019, setting the targets for the European environment, economy, and society to 
reach zero net emissions of greenhouse gases in 2050, outlining all needed technological and 
societal transformations that are aiming at combining prosperity and sustainability. To support 
EU countries in achieving the targets, the EU and European Commission (EC) recognised the 
need for an objective way to monitor anthropogenic CO2 emissions and their evolution over 
time.  
 
Such a monitoring capacity will deliver consistent and reliable information to support informed 
policy- and decision-making processes, both at national and European level. To maintain 
independence in this domain, it is seen as critical that the EU establishes an observation-
based operational anthropogenic CO2 emissions Monitoring and Verification Support (MVS) 
(CO2MVS) capacity as part of its Copernicus Earth Observation programme.  
 
The CORSO research and innovation project will build on and complement the work of 
previous projects such as CHE (the CO2 Human Emissions), and CoCO2 (Copernicus CO2 
service) projects, both led by ECMWF.  These projects have already started the ramping-up 
of the CO2MVS prototype systems, so it can be implemented within the Copernicus 
Atmosphere Monitoring Service (CAMS) with the aim to be operational by 2026. The CORSO 
project will further support establishing the new CO2MVS addressing specific research & 
development questions. 
 
The main objectives of CORSO are to deliver further research activities and outcomes with a 
focus on the use of supplementary observations, e.g., co-emitted species or auxiliary 
observations to better separate fossil fuel emissions from the other sources of atmospheric 
CO2. CORSO will deliver improved estimates of emission factors/ratios and their uncertainties 
as well as the capabilities at global and local scale to optimally use observations of co-emitted 
species to better estimate anthropogenic CO2 emissions. More broadly, CORSO will also 
provide clear recommendations to CAMS, ICOS, and WMO about the potential added-value 
of high-temporal resolution 14CO2 (radiocarbon) and APO (atmospheric potential oxygen) 
observations as tracers for anthropogenic emissions in both global and regional scale 
inversions and develop coupled land-atmosphere data assimilation in the global CO2MVS 
system constraining carbon cycle variables with satellite observations of soil moisture, LAI 
(leaf area index), SIF (solar induced fluorescence), and biomass. Finally, CORSO will provide 
specific recommendations for the topics above for the operational implementation of the 
CO2MVS within the Copernicus programme. 
 

2.2 Scope of WP2 
The work presented in this report is part of WP2 of CORSO, which deals with “Use of co-
emitted species (correlations, improved emission ratios, uncertainties) in data assimilation 
systems". The aim of WP2 is to improve the use of observations of co-emitted species (NO2, 
CO) to better estimate anthropogenic CO2 emissions in the future CO2MVS capacity. This is 
based on the recognition that anthropogenic CO2 emission estimates cannot generally be 
constrained using CO2 concentration observations alone, and the detectability of the 
anthropogenic signal of co-emitted species, typically with much shorter atmospheric lifetimes, 
is often much better than that of CO2. For the emission estimation development at local scale, 
this WP focuses on the development of methods to increase the accuracy of annual CO2 
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emission estimates of hot spots, industrial and urban areas by integrating satellite 
observations of co-emitted species (NO2 and CO) in data assimilation systems. Since CO2 
satellite observations are temporally sparse (even with the future CO2M constellation), 
temporal sampling biases are a significant source of uncertainty in annual CO2 emission 
estimates of hot spots. Co-emitted species such as CO and NO2 are and will be available at 
sub-diurnal temporal coverage from current and future LEO and GEO satellites. They can 
therefore be used to improve the constraint on the temporal variability of CO2 emissions and 
hence for reducing the uncertainty in annual estimates. The local and regional studies will 
focus on three regions: Europe, Africa, and Southeast Asia.  

 
2.2.1 Scope of this deliverables 

Since it is computationally too expensive to conduct full-chemistry simulations in the global 
IFS-based CO2MVS at the scale of emission plumes, a fast and reliable chemistry scheme 
needs to be developed that can be used in the lightweight local mass-balance approaches 
(T2.1) and in the global CO2MVS (T2.4). We develop and test computationally efficient 
chemistry schemes that can be applied in data-driven emission quantification and low-
resolution global models. We parameterise the NOx net chemical rate of change and the 
NO2:NO ratio to improve our ability to exploit atmospheric NO2 while minimising additional 
computational overhead from atmospheric chemistry. ECMWF will contribute to this task to 
link it to the development of the global IFS CO2MVS. This NOx chemistry scheme will be tested 
within the global IFS- based CO2MVS and compared with another ML-based surrogate model 
of the CAMS chemical model under development at ECMWF.  

 
2.2.2 Work performed in this deliverable 

 
The following activities have been conducted in order to achieve the deliverable; they are 
presented in detail in Section 3: 

• Random forest regression models for NOx chemistry rate and NO2:NO were trained on 

GEOS-Chem model runs for a European Domain in 2019.  

• Regression models were tested and validated on perturbed model runs for the same 

period, and for the unseen year 2021.  

• An additional methodology for predicting the change in NOx chemistry under emission 

perturbations using a scaling-based method is presented and tested using the same 

modelled data. This is in preparation for upcoming ensemble Kalman filter calculations. 

• A new simplified GEOS-Chem forward model was developed to model the transport 

and emissions of atmospheric NOx using the presented chemistry schemes to predict 

the chemistry rates (regression-based GEOS-Chem). The output NOx columns were 

compared to the GEOS-Chem full-chemistry model run. 

• The NO2:NO regression model was used to convert these NOx columns to NO2 

columns (with the TROPOMI averaging kernels applied). This reconstruction was 

again compared to the GEOS-Chem full-chemistry model run. 

• The reconstruction error for this light-weight methodology for modelling NO2 was 

compared to the deviation between GEOSChem and TROPOMI, as well as the 

magnitude of the internal TROPOMI precision values.  

2.2.3   Deviations and counter measures 
There were no deviations from the original work plan. 
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3 Data and methods 

Here, we describe the GEOS-Chem atmospheric transport model used to build our random 
forest regression models, the satellite column data we use to evaluate our parameterised 
model of atmospheric NOx chemistry, and details that describe how we develop our random 
forest regression models.  

Figure 1 shows a schematic that provides an overview of the different steps we use to 
parameterise NOx chemistry and NO2:NO columns and relate them to NO2 so that can be 
compared with satellite observations. A random forest regression model, or a scaling-based 
approach can be used to predict the chemistry rates. The modelled NOx concentrations are 
then converted to NO2 using an additional random forest model. This efficient approach 
significantly reduces GEOS-Chem’s computational cost for forward modelling of NO2 columns. 
This is particularly useful for data assimilation, allowing anthropogenic NOx emission 
perturbations to be compared with satellite NO2 observations, such as TROPOMI.  

 

Figure 1: A schematic illustrates how NOx chemistry parameterization models are integrated into GEOS-
Chem for modelling of atmospheric NOx without a full chemistry scheme.  

 
3.1 GEOS-Chem Atmospheric Chemistry Transport Model  

We use version 14.2.2 of the GEOS-Chem atmospheric chemistry transport model to describe 
the emissions, transport, and chemical production/loss of atmospheric NOx. For the purpose 
of our study, we use a nested version of the full chemistry model, centred over mainland 
Europe (32.75 to 61.25° N, -15 to 40 ° E) with 47 vertical levels, approximately 30 of which fall 
below the dynamic tropopause. The nested model runs with a horizontal spatial resolution of 
0.25°x0.3125°. Initial conditions and lateral boundary conditions to the nested domain were 
created from a consistent global version of the GEOS-Chem model run at 4°×5°, with three-
hourly output fields. We ran the model with a transport timestep of 5 minutes and a chemistry 
timestep of 10 minutes.  

The model is driven by offline meteorology fields from the GEOS Forward Processing (GEOS-
FP) product from the Global Modelling and Assimilation Office (GMAO) at NASA Goddard 
Space Flight Center. GEOS-FP has a native horizontal resolution of 0.25°x0.3125° with 72 
vertical pressure levels and 3 hr temporal resolution. To describe the emissions of NOx, which 
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differ by year, we used anthropogenic emissions from the Community Emissions Data System 

(CEDS) version 2 (Hoesly et al., 2018), which provides NOx emissions in NO2 equivalent for 
anthropogenic combustion (industry, energy extraction), and non-combustion sources 
(agriculture, solvents), including surface transport and shipping. The partitioning of NOx 
emissions assumes that 65.2% of NOx emissions are emitted as NO. Aircraft emissions for 
NO and NO2 are taken from the Aviation Emissions Inventory Code (AEIC) (Simone et al., 
2013). Pyrogenic emissions of NO are taken from the Global Fire Emissions Database (GFED) 
version 4.1 (Randerson et al., 2017). In addition, the NOx emissions from soil and lightning are 
parameterised within GEOS-Chem (Vinken et al., 2014; Gressent et al., 2016). The NOx 
concentration, the NOx chemical rates of change, and relevant meteorology were output at a 
temporal resolution of one hour. The chosen meteorological parameters are shown in Table 
1. These were selected as they were all found to have a relationship with the net NOx chemical 
rate of change.  

Parameter Description Units 
NOx Species concentration molec cm-3 

SZA Solar zenith angle at grid point degrees 

Longitude Grid point coordinate degrees-East 

Latitude Grid point coordinate degrees-North 

Altitude Height above ground level m 

Radiation Incident short wave radiation W m-2 

Temperature Atmospheric temperature K 

Humidity Water vapour mixing ratio vol vol-1 

Wind speed Wind speed magnitude m s-1 

 
Table 1. Input parameters used in regression analysis to predict the NOx chemical net rate of change 

[molec cm−3 s−1] and NO2:NO ratio. 

The model was run for the full year 2019 with baseline (unperturbed) NOx anthropogenic 
emissions taken from the CEDs emission inventory. This data was used to train the regression 
models. To further validate the regression model’s performance under varying emissions, 
additional model runs were conducted with random perturbations applied to anthropogenic 
NOx emissions on the order of ±20%. We chose this size of perturbation because a 20% 
increase in emissions induces changes in NO2 columns on the same order of magnitude as 
the difference observed between GEOS-Chem and TROPOMI (as in Fig. 2a). These perturbed 
runs were performed for 10 days in January, April, July, and October. A model run for the year 
2021 was also performed in order to test the regression performance for an unseen time 
period. 

(a)                                                                              (b) 

Figure 2: a) Sensitivity testing shows that the impact of 20% emission perturbations on modelled NO2 
columns is on the same order as the deviations between GEOS-Chem and TROPOMI. (b) The impact 
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of emission perturbations on the NOx chemistry rate becomes small above 3km from the ground, and 
when the change in NOx concentration < 5 × 104 molec/cm3. 

 
3.2 Random Forest regression modelling  

 
We trained two random forest regressor models to predict the NOx net chemical rate of 
change, and the NO2:NO ratio. These models were built using the Sci-kit learn python package 
(Pedregosa et al., 2011). We performed hyperparameter tuning to minimise the computational 
time of model prediction while maintaining adequate prediction performance (see Fig. A1).  
 
We separately trained both regression models for each month of the year 2019. The models 
were developed using the NOx concentration, the spatial location and meteorological variables 
as input parameters. We then applied a forward selection feature extraction procedure, using 
mean absolute errors, to further optimise model performance. Based on this procedure, we 
selected a set of nine features (table 1) for both prediction models. The individual relationship 
between each of the nine features and the NOx chemistry rate of change are shown in Fig. 
A2. We also considered other parameters, including air pressure, air density, the planetary 
boundary layer height, and the relative mixing ratio of ozone and carbon monoxide (CO), but 
these were excluded during feature selection.  
 
We trained and tested our NOx chemistry regression models on model grid points over 
mainland Europe in the first 3 km above the surface –the region where changes to surface 
emissions were found to directly influence the atmospheric chemistry, see Fig. 2b. The 
regression model for the NO2:NO ratio was predicted for each level in the troposphere and 
trained on the subset of model data that coincides with the TROPOMI swath (11:30 - 15:30 
overpass). The NO2:NO ratio can be used to convert the concentration: 
 

𝑁𝑂2 = 𝑁𝑂𝑥
𝑁𝑂2:𝑁𝑂

1+𝑁𝑂2:𝑁𝑂
           (1) 

 

We test both models on unseen data from model runs that include ±20% emission 
perturbations similar to those used in an ensemble Kalman filter (Feng et al., 2009, 2023), as 
well as from an unseen year, 2021. To assess the performance of the regression models, we 
used the coefficient of determination, R2, the mean absolute error (MAE), and the mean bias. 
These are defined by the following equations, where 𝑦𝑖 are true values, 𝑦𝑖̂ are predicted values, 

𝑦̅ is the mean of the true values, and N is the number of datapoints:  
 

𝑅2 = 1 − 
∑ (𝑦𝑖− 𝑦𝑖̂)2𝑁

𝑖=1

(𝑦𝑖− 𝑦̅)
                   (2) 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 −  𝑦𝑖̂|

𝑁
𝑖=1                   (3) 

𝑀𝑒𝑎𝑛 𝑏𝑖𝑎𝑠 =
1

𝑁
∑ (𝑦𝑖 −  𝑦𝑖̂)

𝑁
𝑖=1                (4) 

 
3.3 Constant lifetime scaling  

In an alternative formulation, we apply the assumption that the lifetime of atmospheric NOx 
remains constant under stable meteorological conditions. Hence, if a full chemistry model 
run is available for a baseline emission scenario, the chemistry rates for perturbed scenarios 
can be calculated by scaling the original rate according to the proportional change in NOx 
concentration.  
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This approach serves as an alternative to using regression models for predicting the chemistry 
rates. The atmospheric lifetime, τ of NOx is given by:  

𝜏 =  
𝑁𝑂𝑥

𝑅𝑁𝑂𝑥

             (3) 

where NOx denotes the combined NO and NO2 species concentrations [molec cm−3] and RNOx 
is the chemical rate of change [molec cm−3 s−1] that describes the net loss, which accounts for 
the balance between its chemical production (e.g., from reactions involving NO or NO2 
precursors) and its chemical loss processes (e.g., reactions forming reservoirs like HNO3 or 
NOy species). Note that when NOx experiences net chemical production, the atmospheric 
lifetime becomes negative. The benefit of looking at chemical lifetime, rather than the net rate 
of change, is that the quantity is largely independent of species concentration. This 
independence allows for a more stable understanding of the NOx chemistry, irrespective of 
fluctuations in its concentration caused by emission changes. 
 
We found that while the influence of ±20% emission perturbations cause clear changes to the 
NOx chemical net rate of change, the resulting changes to atmospheric lifetime are 
considerably smaller (see Fig. A3). This result suggests that the chemical lifetime is driven by 
the meteorology and location in the model but is less sensitive to changing concentrations of 
NOx. The unperturbed model run provides NOx concentrations and rates of change at a 1-hour 
temporal resolution, allowing the chemical rate of change to be updated every hour under the 
assumption of an unchanged chemical lifetime. The new rate of change can be determined 
using the NOx lifetime, τ, and the local NOx concentration:  
 

𝑅𝑁𝑂𝑥
(𝑥, 𝑦, 𝑧, 𝑡) =

𝑁𝑂𝑥(𝑥,𝑦,𝑧,𝑡)

𝜏(𝑥,𝑦,𝑧,𝑡)
              (4) 

 
For this method, an initial unperturbed full-chemistry model run must be employed to 
determine the NOx chemical lifetime 𝜏(𝑥, 𝑦, 𝑧, 𝑡) for each grid-point and time-point for the spatial 
and temporal region of interest. Then for any further perturbed model runs, the chemistry rates 
can be determined without the need of an integrated chemistry scheme, thereby saving 
considerable computational time. The updated chemistry rates are then simply scaled by the 
ratio of the new NOx concentration to the original NOx concentration; so, if the concentration 
doubles, then we assume a doubling in the net chemical rate of change.  

 
3.4 Regression-based chemistry atmospheric transport modelling  

For this study, we added the NOx species to the GEOS-Chem tagged carbon model, CO2, CO, 

methane, and carbonyl sulphide, in which individual tagged tracers track contributions of these 
trace gases from geographical regions and/or natural and human- driven fluxes. This model 
does not include an integrated chemistry scheme and therefore the NOx species chemical rate 
of change is determined using the NOx chemistry regression model. Going forward, we refer 
to this model as the regression-based atmospheric chemistry model (shown in Fig. 1). 

We performed a full-chemistry model run with emission perturbations to evaluate the impact 
of emission changes on NOx chemistry, and later to assess the performance of our regression 
model in predicting the effects of emission changes. An analysis of how the emission-driven 
changes in chemistry rate varied with the atmospheric altitude as well as the change in NOx 
concentration is shown in Fig. 2b. The net rate of change in NOx chemistry showed minimal 
variability at altitudes below 3 km, where the chemistry change was less than 9×103

 

molec/cm3/s. Additionally, minimal variability in atmospheric chemistry was observed when 
the absolute change in NOx concentration was less than 5×104 molec/cm3, which corresponds 
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to a chemistry change of less than 2×103 molec/cm3/s. Based on these findings, we set a 
condition to update the NOx net chemical rate of change using the unperturbed full-chemistry 
outputs for altitudes above 3 km and for regions where the change in NOx concentration is 
less than 5×104 molec/cm3. For all other regions, the chemistry regression model is used to 
predict the new rate of change.  

We also used the constant lifetime scaling method (see above) to predict the new rate of 
change. Looking to Fig. 1 we can see that this methodology provides an alternative approach 
to the regression-based atmospheric chemistry model for modelling NOx columns. Throughout 
this report we will compare the results of the regression-based chemistry scheme and the 
constant lifetime scaling based approach.  

We ran the model for 10 days in January, April, July, and October which provided contrasting 
seasonal conditions to test the model. For each run, we use the ±20% perturbed 
anthropogenic NOx emission sets. To evaluate the veracity of the NOx column model outputs 
for the regression-based chemistry model and for the constant lifetime scaling model, we 
compare them with the full-chemistry model outputs. We use our NO2:NO ratio regression 
model to convert NOx results from our atmospheric chemistry regression model to NO2 
columns, sampled at the time and location of TROPOMI data, so they can be compared with 
TROPOMI NO2 column data.  

3.5 TROPOMI Satellite Column Observations of NO2  

We use TROPOMI NO2 tropospheric columns to compare with the GEOSChem model output. 

TROPOMI was launched in 2017 in a Sun-synchronous orbit with a local equatorial overpass 
time of 13:30. It has a swath width of 2600 km and a ground pixel of 7×7 km2 in the nadir. Due 
to the width of the swath, the 13:30 overpass time corresponds to data captured with local 
solar time (LST) ranging from 11:30 and 15:30 in the highest latitude regions of the European 
domain. We only used data with a quality flag ≥ 0.75, filtering out data affected by elevated 
cloud cover, aerosol loading, and larger solar and viewing zenith angles. We analysed 
TROPOMI data for 10 days in January, April, July, and October 2019.  

For our study, we regridded TROPOMI data to our 0.25◦×0.3125◦ GEOS-Chem model grid. 
To enable a comparison between TROPOMI and GEOS-Chem, we sampled the model at the 
location and time of each TROPOMI observation. We applied scene-dependent TROPOMI 
averaging kernels, describing the instrument sensitivity to changes in atmospheric NO2, to the 

corresponding model NO2 profiles.  
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4 Results and discussion 

Here, we report the model performance of our atmospheric chemistry prediction models for 
NOx and the accompanying regression model for the NO2:NO ratio that enables us to convert 
NOx columns to NO2 columns observed by satellites. We assess the fidelity of our results from 
these models using the full-chemistry version of GEOS-Chem and evaluate our results using 
TROPOMI NO2 column data. 

4.1 Performance of atmospheric chemistry regression models for NOx  
 
4.1.1 NOx chemistry random forest 

Fig. 3a shows that the NOx chemistry random forest model has a very good performance at 
reproducing results from the full-chemistry version of GEOS-Chem with 20% emission 
perturbations applied to the testing dataset for the four months we study in 2019. The model 
performance R2 values are 0.97, 0.97, 0.96 and, 0.95 for January, April, July, and October 
2019, respectively. The MAE values are largest in July (4×104 molec/cm3/s) and smallest in 
January (2.3×104 molec/cm3/s), reflecting the range in magnitude of chemistry rates that 
increase during summer months over Europe. 

We also tested our regression-based atmospheric chemistry model with model data from 2021 
(Fig. A4). As expected, the regression model performance has less skill in reproducing data 
with new meterological conditions that have not been used for training. In this case, the MAE 
values are higher by a factor of 1.3-1.8 compared with the overall performance comparison 
shown in Fig. 4. Nevertheless, the model still shows substantial skill despite substantial 
differences in anthropogenic emissions between 2019 and 2021 due to COVID-19. 
Specifically, NOx emissions were found to decrease by 18-24% during lockdown periods 
(Miyazaki et al., 2021) leading to a mean observed reduction in NO2 of 29% (Cooper et al., 

2022).    

4.1.2 NOx chemistry prediction using constant lifetime scaling NOx chemistry random 
forest 

Fig. 3b shows results from using our alternative atmospheric chemistry regression NOx model 
that employs a constant atmospheric lifetime scaling approach (eq. 4). The resulting model 
performance is a significant improvement above the other regression model for all four study 
months. Using our scaling approach, we found consistent values of R2 = 1.0 and MAE values 
that are approximately 2-3 times smaller than the other regression model. As with the other 
regression model, the size of the error is scaled by the seasonal changes in chemistry rates.  

(a) 
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(b) 

 
(c) 

 
Figure 3: Actual versus predicted scatter plots for (a) the random forest regression model for predicting 
the NOx chemistry rate, (b) the constant lifetime scaling for reconstructing the NOx chemistry rate using 
an unperturbed chemistry dataset, (c) the reconstruction of NO2 from NOx using the random forest 
regression model for predicting the NO2:NO ratio. 

 

While this approach shows extremely encouraging abilities to determine NOx chemistry rates, 
its effectiveness relies on having a full-chemistry model run available for at least one set of 
emission inputs. Consequently, this approach is particularly useful for emission perturbation 
studies, for which numerous emission distribution scenarios might be needed for model 
inversion work. In this case, the full-chemistry model would only need to be run once for the 
given time period of interest. However, we cannot predict the NOx chemistry using this method 
for a previously unmodelled time period.  

 

4.1.3 NO:NO2 ratio regression model 

We find the random forest regression model to predict NO2:NO ratios also demonstrates 

significant performance. The predicted ratio is used to convert NOx concentrations to NO2 
concentrations (eq. 1). Fig. 3c shows that the regression model can reproduce "true" NO2 
values from the full-chemistry of the GEOS-Chem model, with values of R2 of 1.0; the 
exception is January when R2 = 0.99.  
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(a) 

(b) 

Figure 4: Regression model prediction performance compared when tested on a 20% perturbed model 
run for 2019 and an unseen year, 2021. (a) Shows the NOx chemistry regression model performance 
comparisons and (b) shows the NO2 prediction performance using the NO2:NO regression model. 

Generally, the model performance is better during summer months and worse in winter 
months, with MAE values an order of magnitude smaller in July compared to January. This is 
partly due to NO2 concentrations increasing during colder months due to increased 
combustion and longer nights, and because we find that NO2:NO ratios become increasingly 
hard to determine at higher solar zenith angles, typically experienced over Europe during 
daytime through winter months. We also examine the performance of this regression model 
using data from the unseen year 2021. As with the atmospheric chemistry regression model, 
described above, the performance was good but worse than for 2019 in which data was used 
to train the model. The MAE reduced by a factor of 3.25, 3.52, 3.04, and 3.14 for January, 
April, July, and October respectively. We found the R2 performance reduced most for January 
from 0.99 to 0.92, During April and October R2 reduced from 1.0 to 0.99, while R2 1.0 was 
maintained in July. 

4.2 Atmospheric modelling of NOx  

Fig. 5 shows the NOx column reconstruction for the two regression models used to describe 
the NOx chemistry rates from the full-chemistry version of the GEOS-Chem model. From a 
visual inspection, there are no obvious differences in the spatial distribution of the NOx 
columns reconstructed using both the regression-based chemistry model and the constant 
lifetime scaling model. However, when mapping the differences, there are areas of deviation 
from the full-chemistry model. Broadly, this deviation is significantly smaller when we use the 
scaling-based model compared to the regression-based. In addition, the error accumulation 
in January is notably smaller than in other months. 

Fig. 6 shows the temporal variation in the reconstruction error. The range, IQR, and median 
values are shown in 6a and the mean absolute percentage error (MAPE) is shown in 6b. For 
the regression-based chemistry method the range in deviation peaks at up to 3×1014 

molec/cm2 in January, 5×1014 molec/cm2 in April and 6×1014 molec/cm2 in July and October. 
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This is reflected in maximum MAPE values of 2.8%, 9.7%, 8.9%, and 9.3% for the four months, 
respectively. On the whole, the MAPE reduces through time, with final deviation values of 
1.7%, 3.4%, 2.0%, and 4.8% after the full 10-day run.  

   

     (a)                                               (b) 

Figure 5: The modelled NOx columns after a 10-day model run with ±20% emission perturbations. NOx 
columns are compared for the GEOS-Chem full-chemistry model and (a) NOx columns are simulated 
using the regression-based chemistry method and (b) using the constant lifetime scaling method. 

 
Reconstruction errors for the constant lifetime scaling model show much smaller errors, 
particularly, with MAPE < 0.2% throughout the 10-day run. This is driven by the smaller impact 
that emission perturbations have on the NOx chemistry in January as shown by Fig. A3. In 
particular, the lifetime of NOx is relatively unchanged between the unperturbed and perturbed 
model runs. This reduced impact in January is likely due to the slower rate of photochemical 
reactions in the winter months and increased atmospheric stability at lower temperatures. The 
other months do see a more prominent deviation of up to a maximum of 4×1014 molec/cm2, 
with peak MAPE values of 6.6%, 5.7%, and 4.5%, for April, July, and October, respectively. 
As with the regression-based model outputs, here the MAPE also generally decreases through 
time with final deviation values of 0.1%, 1.1%, 0.2%, and 0.3% for each month, respectively. 
Interestingly, while the range and IQR are relatively stable throughout the run when using the 
regression-based reconstruction, these quantities decrease considerably with time when we 
use the scaling-based reconstruction. 
 
The reconstruction error has a small diurnal cycle, peaking in the morning and to a lesser 
extent in the evening, reflecting the diurnal cycle of NOx chemistry. Overall, the absolute model 
error for both the regression-based and scaling-based methods peaks after the first day and 
then gradually reduce, plateauing by ≃day 6. It is encouraging that there is no accumulation 
of error through time, suggesting this approach would be suitable for studies longer than for 
ten days. It is clear that the optimal reconstruction performance is found when using the 
scaling-based method, but as we already note there are limitations to this method. The 
regression-based approach still provides excellent reconstruction performance for our 
purposes.  
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(a) 

 
(b)                                                                                 (c) 

Figure 6: Comparison of the temporal variation in NOx column reconstruction for the regression-based 
and scaling-based model. (a) The median (dashed line), IQR (light-shaded region) and range (dark-
shaded region) of the NOx column reconstruction error over the 10-day runs. (b) The mean absolute 
percentage error over the 10-day runs. (d) Shows the reduction in computational time when modelling 
atmospheric NOx using each of our chemistry prediction methods compared to running with the full-
chemistry model. 

 
Substantial computational time is saved when we employ these regression methods to model 
atmospheric NOx. Fig. 6c shows the time taken for each model to perform a 1-day model run. 
This was calculated as the mean average for the model to run for a single day out of the 10 
days run for each of the four months, repeated for 3 model runs. Clearly, the full-chemistry 
model takes the longest, with a mean of 52 minutes per day for our nested model over Europe. 
The regression-based chemistry model is significantly faster with a mean of 16 minutes (3.25 
times improvement), while the constant lifetime scaling method is even fast, with a mean of 
12 minutes (4.3 times improvement). It is important to note that there will be some variation in 
these model times depending on the relative loading experienced by the computer system 
used. In order to perform regression-based chemistry modelling, each model must be trained, 
which requires approximately 18 hours per monthly model. In contrast, applying the constant 
lifetime scaling method necessitates an initial full-chemistry model run, taking about 26 hours 
for a single month. While training regression models also relies on full-chemistry model runs, 
the advantage is that the trained models can be applied to unseen time periods, saving time. 
This flexibility is not available when calculating chemistry rates using the scaling method. 
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4.3 NO2 column reconstruction  

Finally, we assess the capability of our NO2:NO regression model, convolved with TROPOMI 
instrument averaging kernels, to reproduce observation column distributions of NO2 from 
TROPOMI. The absolute differences in NO2 columns between GEOS-Chem full-chemistry and 
the GEOS-Chem regression-based and scaling-based models are compared to the absolute 
difference in TROPOMI NO2 and GEOS-Chem full-chemistry, as well as to the magnitude of 
the TROPOMI NO2 column precision data. This is presented in Fig. 7, compared for 8 days in 
January, April, July, and October. 

Figure 7: The absolute difference in NO2 from GEOS-Chem full-chemistry with the constant lifetime 
scaling based model (blue), with the regression-based chemistry model (green), with TROPOMI NO2 
(red), as well as TROPOMI NO2 tropospheric column precision values (yellow). In addition, the 
normalised NO2 differences are calculated by normalising the reconstructed model deviation by the 
absolute deviation between GEOSChem and TROPOMI, as well as by the TROPOMI column precision. 

We find comparable NO2 reconstruction errors for the four months we study. Earlier, with the 
NOx reconstruction, we found that the error was smaller for January than the other months 
(Fig. 3a and 3b), however, the higher error from the January NO2:NO regression model (Fig. 
3c offsets this advantage, ultimately bringing the overall reconstruction error for all months to 
a comparable level. We find something similar when we compare our NO2 reconstructions 
based on the scaling- based and regression-based methods, with a comparable magnitude of 
absolute error between the two. When we compare the difference between GEOS-Chem and 
TROPOMI NO2 columns, we find that the regression model NO2 reconstruction errors are 
much smaller than the estimated precision values for the data. This provides confidence that 
our model reconstruction performance is robust enough for use in inversion work as well as 
for general comparisons with TROPOMI or other observational data. See Appendix B for a 
more detailed analysis on the difference between modelled column NO2 and observed 
TROPOMI data.  

Fig. 7 shows that the median NO2 column model reconstruction errors are about 5% of the 
actual deviation from TROPOMI – 4.6% and 5.1% for the scaling and regression-based 
approaches, respectively. Similarly, these construction errors for the scaling and regression-
based approaches represent a median value of 1.6%, and 3.1% of the TROPOMI precision 
values. Looking at all the reconstructed data points for both methods for all the days modelled 
in our four months of interest, we found that 99.98% of the data gave a reconstruction error 
smaller than the corresponding TROPOMI column precision.  
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4.4 Prospects for implementation in IFS 
 
Looking ahead to the implementation of parametrised NOx chemistry for CO2 emission 
inversions with the IFS model, we compared net NOx rates of change between GEOS-Chem 
and the IFS. This analysis spans two months (January and July) of 2021 that represent two 
distinct photo-chemical regimes in Europe. We find that IFS and GEOS-Chem generally agree 
on the median diurnal variability in the surface model layer, shown in Fig. 8. Nocturnal NOx 
removal in January is higher than during daytime in both models, although GEOS-Chem 
simulates larger nighttime NOx removal than the IFS. In July, NOx removal peaks in the early 
morning before dropping to lower afternoon values in both models, but IFS consistently 
simulates larger chemical NOx removal by ~0.25×106 molec/cm3/s. The differences in absolute 
NOx rates of change between GEOS-Chem and IFS may be caused by differences in 
chemistry schemes, and different surface layer heights in the models (20 m in IFS and 60 m 
in GEOS-Chem). Based on this analysis, we conclude that NOx chemistry in IFS can be 
parametrised using similar driving variables as for GEOS-Chem, but that they need to be 
adjusted to capture absolute values of the IFS-simulated NOx rate of change. 

Figure 8: Surface-layer net NOx rate of change in IFS (blue) and GEOS-Chem (orange) shown for 

January (left panel) and July (right panel) 2021 in Europe (analysed domain: 15 W – 40 E, 32.75 

N – 61.25 N). Lines and shaded areas display the median and inter-quartile range, respectively. 
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5 Conclusion 

We have demonstrated that the NOx chemistry rates and NO2:NO ratio described by a leading 

3-D atmospheric chemistry model can be reproduced using random forest-based regression 
models using NOx concentrations, the spatial location, and meteorological variables as input 

parameters. The models perform successfully through all months of 2019 with R2 > 0.95 for 
predicting NOx chemistry rates and R2 > 0.99 for predicting the corresponding NO2:NO 
concentration ratios. We also show that these models maintain some prediction capability 
when tested on model outputs from an unseen year (2021) with contrasting environment 
conditions. Overall, the prediction power when testing on unseen meteorology increases the 
MAE by an average factor of 1.5 for the chemistry rate prediction, and by an average factor of 
3.3 for the NOx to NO2 conversion performance. Additional work will focus on assessing the 
impact on modelled NO2 column reconstruction when using regression models trained on 
meteorological periods excluded from the training data. 

We have also demonstrated that the atmospheric lifetime of NOx is stable against varying 

emissions, particularly in winter months. From this, we have demonstrated that it is also 
possible to predict updated NOx chemistry rates of change as a result of emission 

perturbations, with knowledge of NOx chemistry from an initial unperturbed model run. This 

scaling-based approach has impressive prediction performance with R2 =1.0. 

We have developed two viable methodologies to model atmospheric NOx in a more 

computationally efficient way than using the GEOS-Chem 3-D model. The regression-based 
chemistry method has the advantage of not requiring prior knowledge of the NOx lifetimes for 

a baseline model run and reduces the computational time by a factor of 3.25. The lifetime 
scaling-based approach reduces the model run time slightly further by a factor of 4.3, but a 
baseline full-chemistry model run is required. This scaling-based approach has smaller model 
reconstruction errors, but generally both approaches have reconstruction errors smaller than 
the TROPOMI precision values for 99.98% of the reconstructed data (399,502 points). Both 
methodologies will be applied in deliverable D2.7, where we will apply model inversions using 
IFS with an incremental 4D-Var algorithm; and using GEOS-Chem with an ensemble Kalman 
filter (EnKF) approach. In particular, the 4D-var algorithm involves running an initial full-
chemistry simulation, therefore the constant lifetime scaling approach could be efficiently 
applied in this case.  

The regression model development work will be expanded by testing, and if necessary, 
applying additional training using IFS model outputs. Furthermore, the models will be extended 
to a global scale and tested on additional years and regions of interest.  

Our study provides confidence in random forest models being used to describe NOx chemistry 

to a sufficient accuracy for them to play an important role in NOx:CO2 inversion methods to 

improve ffCO2 estimates. This unlocks a more efficient method to infer NOx from which to infer 

ffCO2 via emission estimates (Berezin et al., 2013; Lopez et al., 2013; Goldberg et al., 2019; 

Super et al., 2020). Results from our study are particularly timely with the launch in the next 
few years of the Copernicus Anthropogenic Carbon Dioxide Monitoring constellation (CO2M) 
that include column measurements of CO2 and NO2. Our future work will implement a 

combined a joint NOx:CO2 model inversion to constrain geographically resolved ffCO2 

estimates that will support the development of measurement, reporting and verification 
systems, contributing to the fundamental aim of CORSO.  
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Appendix A 

 
 

 
 
Figure A1: Impact of hyperparameter changes on random forest regression model performance for 
predicting NOx chemistry rates. Plots show the effect of varying the number of trees, maximum tree 
depth, maximum leaf nodes, and maximum features per decision on mean R2 MAE, and prediction time 
(shaded regions represent performance ranges across monthly models). Increased algorithm 
complexity improves R2 and reduces MAE but increases prediction time. Optimal hyperparameters—
40 trees, depth of 30, 300,000 leaf nodes, and 4 features per decision—achieve balanced performance 
with a prediction time of ~6 ms. 
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Figure A2: Individual relationships between the nine regression input parameters and the NOx net rate 
of change. A LOWESS fit (red line) illustrates smoothed trends in the data, with R2 values reported for 
each fit. Among the parameters, NOx concentration, altitude, and temperature exhibit noticeable trends 
with chemistry rates, while the remaining parameters show little to no clear trends individually. 
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(a)                                                                          (b) 

Figure A3: The spatial distribution of the impact of ±20% emission perturbations on (a) the NOx net rate 
of change, and (b) the atmospheric lifetime of NOx. Overall, it is clear that the impact on the atmospheric 
lifetime is much smaller, due to its independence from the NOx species concentration. Note that a 
negative lifetime of NOx arises in areas where we have a net chemical production of NOx. 

 
 
 
 
 

 
(a) 

 
(b) 

 
Figure A4: Testing the regression models on 2021. (a) The random forest regression model for 
predicting the NOx chemistry rate, (b) The reconstruction of NO2 from NOx using the random forest 
regression model for predicting the NO2:NO ratio. 
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Appendix B: Comparison with TROPOMI  

The NO2 columns modelled by GEOS-Chem was compared directly with the TROPOMI data 
for assessment of agreement. Scatter plots between the two are shown in Fig. B1, where we 
found significant Pearson correlations (p<0.001) in all months. In January we observe a 
general positive bias, where the model is overestimating NO2, while in July and October, a 
negative bias is seen.  
 
The spatial distribution of the deviation between GEOS-Chem and TROPOMI is shown in Fig. 
B2. While there are clear areas of difference, it is notable that the general regions where we 
observe elevated levels of NO2 are in alignment. In general, the spatial distribution of high-
emission regions throughout Europe is fairly well understood. However, there is likely some 
error on the magnitudes of the emissions in the inventories used. This is likely to explain the 
majority of the areas of large bias between the model and the observations. However, it must 
be noted that other sources of error are present, which include model errors in transport 
processes, potential inaccuracies in the model meteorology used, errors in parameterising 
deposition processes, and the limiting factor of the model spatial resolution. Furthermore, 
there is also error on the TROPOMI measurements (largely characterised by the TROPOMI 
column precision value) including from instrument noise, cloud and aerosol interference, and 
vertical profile and sensitivity assumptions. Looking to Fig. 7, it is clear that there are many 
regions where the error between the model and observations is significantly smaller than the 
satellite precision, and for such areas the contribution of NOx emissions is likely to be accurate. 
 
On the whole, it is promising to the performance of the model that there is a general correlation 
of agreement between the model and satellite data. However, there is room for improvement 
in model agreement, and model inversions would be one approach to achieve this.  

 
 
 

 
Figure B1: Correlation between modelled GEOS-Chem NO2 columns and observed TROPOMI NO2 for 
the four months of interest. The Pearson rank and mean absolute area are shown in the legend. The 
best-fit line (red-dashed) can be compared to the y=x line (black). 
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Figure B2: Comparison between GEOS-Chem and TROPOMI for 5 days in January, April, July, and 
October. 
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